Skip to main content

Research Repository

Advanced Search

All Outputs (10)

Dynamic electrical reconfiguration for improved capacitor charging in microbial fuel cell stacks (2014)
Journal Article
Papaharalabos, G., Greenman, J., Stinchcombe, A., Horsfield, I., Melhuish, C., & Ieropoulos, I. (2014). Dynamic electrical reconfiguration for improved capacitor charging in microbial fuel cell stacks. Journal of Power Sources, 272, 34-38. https://doi.org/10.1016/j.jpowsour.2014.07.187

A microbial fuel cell (MFC) is a bioelectrochemical device that uses anaerobic bacteria to convert chemical energy locked in biomass into small amounts of electricity. One viable way of increasing energy extraction is by stacking multiple MFC units a... Read More about Dynamic electrical reconfiguration for improved capacitor charging in microbial fuel cell stacks.

Robotic hand posture and compliant grasping control using operational space and integral sliding mode control (2014)
Journal Article
Khan, S. G., Herrmann, G., Jalani, J., Mahyuddin, M. N., Khan, S. G., & Melhuish, C. (2016). Robotic hand posture and compliant grasping control using operational space and integral sliding mode control. Robotica, 34(10), 2163-2185. https://doi.org/10.1017/S0263574714002811

© 2014 Cambridge University Press. This paper establishes a novel approach of robotic hand posture and grasping control. For this purpose, the control uses the operational space approach. This permits the consideration of the shape of the object to b... Read More about Robotic hand posture and compliant grasping control using operational space and integral sliding mode control.

Electricity generation and struvite recovery from human urine using microbial fuel cells (2014)
Journal Article
You, J., Greenman, J., Melhuish, C., & Ieropoulos, I. (2016). Electricity generation and struvite recovery from human urine using microbial fuel cells. Journal of Chemical Technology and Biotechnology, 91(3), 647-654. https://doi.org/10.1002/jctb.4617

BACKGROUND: Urine is an abundant waste product which requires energy intensive treatment processes in modern wastewater treatment plants. However urine can be utilised as fertiliser in the form of struvite. Microbial fuel cells (MFCs) are a promising... Read More about Electricity generation and struvite recovery from human urine using microbial fuel cells.

Micro-porous layer (MPL)-based anode for microbial fuel cells (2014)
Journal Article
You, J., Santoro, C., Greenman, J., Melhuish, C., Cristiani, P., Li, B., & Ieropoulos, I. (2014). Micro-porous layer (MPL)-based anode for microbial fuel cells. International Journal of Hydrogen Energy, 39(36), 21811-21818. https://doi.org/10.1016/j.ijhydene.2014.07.136

© 2014 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. Two different anode materials, carbon veil (CV) and carbon cloth (CC), were modified with a micro-porous layer (MPL) in microbial fuel cells (MFCs). When the bi... Read More about Micro-porous layer (MPL)-based anode for microbial fuel cells.

High-Performance, Totally Flexible, Tubular Microbial Fuel Cell (2014)
Journal Article
Ieropoulos, I. A., Taghavi, M., Greenman, J., Beccai, L., Mattoli, V., Mazzolai, B., …Ieropoulos, I. (2014). High-Performance, Totally Flexible, Tubular Microbial Fuel Cell. ChemElectroChem, 1(11), 1994-1999. https://doi.org/10.1002/celc.201402131

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. The current study addresses the development of a flexible microbial fuel cell (MFC) in a tubular configuration. Nafion tubing is employed as a one-compartment MFC and is used as the membrane and th... Read More about High-Performance, Totally Flexible, Tubular Microbial Fuel Cell.

An anthropomorphic design for a minimally invasive surgical system based on a survey of surgical technologies, techniques and training (2014)
Journal Article
Tzemanaki, A., Walters, P., Pipe, A. G., Melhuish, C., & Dogramadzi, S. (2014). An anthropomorphic design for a minimally invasive surgical system based on a survey of surgical technologies, techniques and training. International Journal of Medical Robotics and Computer Assisted Surgery, 10(3), 368-378. https://doi.org/10.1002/rcs.1544

© 2013 John Wiley & Sons, Ltd. Background: Over the past century, abdominal surgery has seen a rapid transition from open procedures to less invasive methods, such as robot-assisted minimally invasive surgery (MIS). This study aimed to investigate... Read More about An anthropomorphic design for a minimally invasive surgical system based on a survey of surgical technologies, techniques and training.

Algal 'lagoon' effect for oxygenating MFC cathodes (2014)
Journal Article
Gajda, I., Stinchcombe, A., Greenman, J., Melhuish, C., & Ieropoulos, I. (2014). Algal 'lagoon' effect for oxygenating MFC cathodes. International Journal of Hydrogen Energy, 39(36), 21857-21863. https://doi.org/10.1016/j.ijhydene.2014.05.173

© 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. This paper describes the active oxygenation performed by photosynthetic organisms in the cathode of a two-chamber Microbial Fuel Cell system. The algal biomass... Read More about Algal 'lagoon' effect for oxygenating MFC cathodes.

Water formation at the cathode and sodium recovery using Microbial Fuel Cells (MFCs) (2014)
Journal Article
Gajda, I., Greenman, J., Melhuish, C., Santoro, C., Li, B., Cristiani, P., & Ieropoulos, I. (2014). Water formation at the cathode and sodium recovery using Microbial Fuel Cells (MFCs). Sustainable Energy Technologies and Assessments, 7, 187-194. https://doi.org/10.1016/j.seta.2014.05.001

Microbial Fuel Cells (MFCs) utilise biodegradable carbon compounds in organic waste to generate electric current. The aim of this work was to enhance MFC performance by using low cost and catalyst (platinum)-free cathode materials. The results showed... Read More about Water formation at the cathode and sodium recovery using Microbial Fuel Cells (MFCs).

Seeing by touch: Evaluation of a soft biologically-inspired artificial fingertip in real-time active touch (2014)
Journal Article
Assaf, T., Roke, C., Rossiter, J., Pipe, T., & Melhuish, C. (2014). Seeing by touch: Evaluation of a soft biologically-inspired artificial fingertip in real-time active touch. Sensors, 14(2), 2561-2577. https://doi.org/10.3390/s140202561

Effective tactile sensing for artificial platforms remains an open issue in robotics. This study investigates the performance of a soft biologically-inspired artificial fingertip in active exploration tasks. The fingertip sensor replicates the mechan... Read More about Seeing by touch: Evaluation of a soft biologically-inspired artificial fingertip in real-time active touch.

Small-scale microbial fuel cells utilising uric salts (2014)
Journal Article
You, J., Greenman, J., Melhuish, C., & Ieropoulos, I. (2014). Small-scale microbial fuel cells utilising uric salts. Sustainable Energy Technologies and Assessments, 6, 60-63. https://doi.org/10.1016/j.seta.2014.01.005

With exhausting fossil fuels and increasing greenhouse gas emissions, numerous attempts, to overcome future energy challenges, are being pursued. In this study, small-scale microbial fuel cells (MFCs, 0.7mL anodic chamber volume) were built to invest... Read More about Small-scale microbial fuel cells utilising uric salts.