Skip to main content

Research Repository

Advanced Search

All Outputs (9)

Row-bot: An energetically autonomous artificial water boatman (2015)
Journal Article
Philamore, H., Rossiter, J., Stinchcombe, A., & Ieropoulos, I. (2015). Row-bot: An energetically autonomous artificial water boatman. Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems, 3888-3893. https://doi.org/10.1109/IROS.2015.7353924

© 2015 IEEE. We present a design for an energetically autonomous artificial organism, combining two subsystems; a bio-inspired energy source and bio-inspired actuation. The work is the first demonstration of energetically autonomy in a microbial fuel... Read More about Row-bot: An energetically autonomous artificial water boatman.

Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC (2015)
Journal Article
Taghavi, M., Stinchcombe, A., Greenman, J., Mattoli, V., Beccai, L., Mazzolai, B., …Ieropoulos, I. A. (2016). Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC. Bioinspiration and Biomimetics, 11(1), Article 016001. https://doi.org/10.1088/1748-3190/11/1/016001

© 2015 IOP Publishing Ltd. The first self-sufficient system, powered by a wearable energy generator based on microbial fuel cell (MFC) technology is introduced. MFCs made from compliant material were developed in the frame of a pair of socks, which w... Read More about Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC.

Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors (2015)
Journal Article
Walter, X. A., You, J., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors. Sensing and Bio-Sensing Research, 6, 43-50. https://doi.org/10.1016/j.sbsr.2015.11.007

© 2015 The Authors. Stability and reliability of microbial fuel cell anodic biofilms, consisting of mixed cultures, were investigated in a continuously fed system. Two groups of anodic biofilm matured with different substrates, acetate and casein for... Read More about Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors.

Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture (2015)
Journal Article
Gajda, I., Greenman, J., Melhuish, C., Santoro, C., Li, B., Cristiani, P., & Ieropoulos, I. (2015). Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture. Water Research, 86, 108-115. https://doi.org/10.1016/j.watres.2015.08.014

© 2015 The Authors. In Microbial Fuel Cells (MFCs), the recovery of water can be achieved with the help of both active (electro-osmosis), and passive (osmosis) transport pathways of electrolyte through the semi-permeable selective separator. The elec... Read More about Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture.

Fade to Green: A Biodegradable Stack of Microbial Fuel Cells (2015)
Journal Article
Winfield, J., Chambers, L. D., Rossiter, J., Stinchcombe, A., Walter, X. A., Greenman, J., & Ieropoulos, I. (2015). Fade to Green: A Biodegradable Stack of Microbial Fuel Cells. ChemSusChem, 8(16), 2705-2712. https://doi.org/10.1002/cssc.201500431

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. The focus of this study is the development of biodegradable microbial fuel cells (MFCs) able to produce useful power. Reactors with an 8mL chamber volume were designed using all biodegradable produ... Read More about Fade to Green: A Biodegradable Stack of Microbial Fuel Cells.

Physarum polycephalum: Towards a biological controller (2015)
Journal Article
Taylor, B., Adamatzky, A., Greenman, J., & Ieropoulos, I. (2015). Physarum polycephalum: Towards a biological controller. BioSystems, 127, 42-46. https://doi.org/10.1016/j.biosystems.2014.10.005

© 2014 Elsevier Ireland Ltd. Microbial fuels cells (MFCs) are bio-electrochemical transducers that generate energy from the metabolism of electro-active microorganisms. The organism Physarum polycephalum is a slime mould, which has demonstrated many... Read More about Physarum polycephalum: Towards a biological controller.

A novel small scale Microbial Fuel Cell design for increased electricity generation and waste water treatment (2015)
Journal Article
Papaharalabos, G., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). A novel small scale Microbial Fuel Cell design for increased electricity generation and waste water treatment. International Journal of Hydrogen Energy, 40(11), 4263-4268. https://doi.org/10.1016/j.ijhydene.2015.01.117

© 2015 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. Microbial Fuel Cells (MFCs) are a sustainable energy technology with minimal carbon footprint, which is promising for wastewater remediation and generation of u... Read More about A novel small scale Microbial Fuel Cell design for increased electricity generation and waste water treatment.

An energetically-autonomous robotic tadpole with single membrane stomach and tail (2015)
Journal Article
Philamore, H., Rossiter, J., & Ieropoulos, I. (2015). An energetically-autonomous robotic tadpole with single membrane stomach and tail. Lecture Notes in Artificial Intelligence, 9222, 366-378. https://doi.org/10.1007/978-3-319-22979-9_37

© Springer International Publishing Switzerland 2015. We present an energetically autonomous robotic tadpole that uses a single membrane component for both electrical energy generation and propulsive actuation. The coupling of this small bio-inspired... Read More about An energetically-autonomous robotic tadpole with single membrane stomach and tail.

Cathode materials for ceramic based microbial fuel cells (MFCs) (2015)
Journal Article
Santoro, C., Artyushkova, K., Gajda, I., Babanova, S., Serov, A., Atanassov, P., …Cristiani, P. (2015). Cathode materials for ceramic based microbial fuel cells (MFCs). International Journal of Hydrogen Energy, 40(42), 14706-14715. https://doi.org/10.1016/j.ijhydene.2015.07.054

© 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. This study showed the electrochemical performance of different cathode electrodes tested on a ceramic separator functioning as a cation exchange membrane. Part... Read More about Cathode materials for ceramic based microbial fuel cells (MFCs).