Hemma Philamore
An Energetically-Autonomous Robotic Tadpole with Single Membrane Stomach and Tail
Philamore, Hemma; Rossiter, Jonathan; Ieropoulos, Ioannis
Authors
Jonathan Rossiter
Yannis Ieropoulos Ioannis2.Ieropoulos@uwe.ac.uk
Professor in Bioenergy & Director of B-B
Abstract
We present an energetically autonomous robotic tadpole that uses a single membrane component for both electrical energy generation and propulsive actuation. The coupling of this small bio-inspired power source to a bio-inspired actuator demonstrates the first generation design for an energetically autonomous swimming robot consisting of a single membrane. An ionic polymer metal composite (IPMC) with a Nafion polymer layer is demonstrated in a novel application as the ion exchange membrane and anode and cathode electrode of a microbial fuel cell (MFC), whilst being used concurrently as an artificial muscle tail. In contrast to previous work using stacked units for increased voltage, a single MFC with novel, 0.88ml anode chamber architecture is used to generate suitable voltages for driving artificial muscle actuation, with minimal step up. This shows the potential of the small forces generated by IPMCs for propulsion of a bio-energy source. The work demonstrates great potential for reducing the mass and complexity of bio-inspired autonomous robots. The performance of the IPMC as an ion exchange membrane is compared to two conventional ion exchange membranes, Nafion and cation exchange membrane (CEM). The MFC anode and cathode show increased resistance following inclusion within the MFC environment.
Citation
Philamore, H., Rossiter, J., & Ieropoulos, I. (2015). An Energetically-Autonomous Robotic Tadpole with Single Membrane Stomach and Tail. Lecture Notes in Artificial Intelligence, 9222, 366-378. https://doi.org/10.1007/978-3-319-22979-9_37
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 31, 2015 |
Publication Date | Jan 1, 2015 |
Journal | Lecture Notes in Computer Science: 4th International Conference, Living Machines 2015, Barcelona, Spain, July 28 - 31, 2015, Proceedings |
Print ISSN | 0302-9743 |
Publisher | Springer Verlag |
Peer Reviewed | Peer Reviewed |
Volume | 9222 |
Pages | 366-378 |
Book Title | Biomimetic and Biohybrid Systems |
DOI | https://doi.org/10.1007/978-3-319-22979-9_37 |
Keywords | energetic-autonomy, ionic polymer metal composite, microbial fuel cell, soft robots |
Public URL | https://uwe-repository.worktribe.com/output/843993 |
Publisher URL | http://dx.doi.org/10.1007/978-3-319-22979-9_37 |
Files
2016 An Energy-Autonomous Robotic Tadpole with Single Membrane Stomach and Tail.pdf
(9.1 Mb)
PDF
You might also like
Modelling microbial fuel cells using Lattice Boltzmann methods
(2018)
Journal Article
Investigation of ceramic MFC stacks for urine energy extraction
(2018)
Journal Article
Design mining microbial fuel cell cascades
(2018)
Journal Article