Skip to main content

Research Repository

Advanced Search

Outputs (53)

Optimisation of an elastomeric pre-buckled honeycomb helmet liner for advanced impact mitigation (2023)
Journal Article
Adams, R., Soe, S., & Theobald, P. (2023). Optimisation of an elastomeric pre-buckled honeycomb helmet liner for advanced impact mitigation. Smart Materials and Structures, 32(9), Article 095012. https://doi.org/10.1088/1361-665x/ace94b

Advances in computational modelling now offer an efficient route to developing novel helmet liners that could exceed contemporary materials’ performance. Furthermore, the rise of accessible additive manufacturing presents a viable route to achieving... Read More about Optimisation of an elastomeric pre-buckled honeycomb helmet liner for advanced impact mitigation.

Novel use of robotic 3D paste printing technology for the creation of ceramic shell investment casting moulds (2023)
Presentation / Conference
Bolouri, A., Jorgensen, T., Khayatzadeh, S., Soe, S., Leon, M., Lightfoot, S., …Farzadnia, F. (2023, June). Novel use of robotic 3D paste printing technology for the creation of ceramic shell investment casting moulds

This paper presentation outlines early-stage, ongoing research into novel approaches with Additive Layer Manufacturing for the direct manufacture of ceramic shell investment casting moulds. The research is focused on the use of 3D printing with refra... Read More about Novel use of robotic 3D paste printing technology for the creation of ceramic shell investment casting moulds.

Compressive behaviour of a square origami surface-based lattice structure fabricated by selective laser melting (2023)
Conference Proceeding
Gao, J., Han, Q., Soe, S., Liu, Z., Feng, J., Zhang, Z., & Wang, L. (2023). Compressive behaviour of a square origami surface-based lattice structure fabricated by selective laser melting. In R. J. Howlett, S. G. Scholz, & R. Setchi (Eds.), SDM 2022: Sustainable Design and Manufacturing (57-66). https://doi.org/10.1007/978-981-19-9205-6_6

Selective laser melting (SLM) is a metal additive manufacturing process that shows significant advantages in manufacturing lattice structures. In this paper, a novel surface-based square origami structure made of a nickel-based superalloy was fabrica... Read More about Compressive behaviour of a square origami surface-based lattice structure fabricated by selective laser melting.

An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens (2022)
Journal Article
Εkonomou, S. Ι., Soe, S., & Stratakos, A. C. (2023). An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens. Journal of the Mechanical Behavior of Biomedical Materials, 137, 105536. https://doi.org/10.1016/j.jmbbm.2022.105536

Antimicrobial 3D printed surfaces made of PLA and TPU polymers loaded with copper (Cu), and silver (Ag) nanoparticles (NPs) were developed via fused deposition modeling (FDM). The potential antimicrobial effect of the 3D printed surfaces against Esch... Read More about An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens.

Laser powder bed fusion of TiB2-modified Cu15Ni8Sn alloy: Processability, microstructure and mechanical performance (2022)
Journal Article
Gao, J., Han, Q., Wang, L., Liu, Z., Soe, S., Zhang, Z., & Gu, Y. (2022). Laser powder bed fusion of TiB2-modified Cu15Ni8Sn alloy: Processability, microstructure and mechanical performance. Materials Science and Engineering: A, 855, 143879. https://doi.org/10.1016/j.msea.2022.143879

Cu15Ni8Sn is widely used in the aerospace and electronics domains because of its good conductivity and toughness. Due to the material's high laser reflectivity and thermal conductivity, however, employing the laser powder bed fusion (LPBF) additive m... Read More about Laser powder bed fusion of TiB2-modified Cu15Ni8Sn alloy: Processability, microstructure and mechanical performance.

Response of gyroid lattice structures to impact loads (2022)
Journal Article
Ramos, H., Santiago, R., Soe, S., Theobald, P., & Alves, M. (2022). Response of gyroid lattice structures to impact loads. International Journal of Impact Engineering, 164, Article 104202. https://doi.org/10.1016/j.ijimpeng.2022.104202

This paper reports on a comprehensive investigation of gyroid lattice structures subject to impact loading. AlSi10Mg samples were manufactured using selective laser melting (SLM) and mechanically characterized using Digital Image Correlation (DIC). U... Read More about Response of gyroid lattice structures to impact loads.

Mechanical behaviour of additively manufactured elastomeric pre-buckled honeycombs under quasi-static and impact loading (2022)
Journal Article
Adams, R., Townsend, S., Soe, S., & Theobald, P. (2022). Mechanical behaviour of additively manufactured elastomeric pre-buckled honeycombs under quasi-static and impact loading. Materials and Design, 213, Article 110368. https://doi.org/10.1016/j.matdes.2021.110368

Selective laser sintering has been used to manufacture different structural variations of a pre-buckled circular honeycomb. The mechanical behaviour of these structures has been examined under both quasi-static and dynamic impact loading. Pre-buckled... Read More about Mechanical behaviour of additively manufactured elastomeric pre-buckled honeycombs under quasi-static and impact loading.

Finite element-based optimisation of an elastomeric honeycomb for impact mitigation in helmet liners (2021)
Journal Article
Adams, R., Townsend, S., Soe, S., & Theobald, P. (2022). Finite element-based optimisation of an elastomeric honeycomb for impact mitigation in helmet liners. International Journal of Mechanical Sciences, 214, Article 106920. https://doi.org/10.1016/j.ijmecsci.2021.106920

Finite element simulation was used to analyse the response of an elastomeric pre-buckled honeycomb structure under impact loading, to establish its suitability for use in helmet liners. A finite element-based optimisation was performed using a search... Read More about Finite element-based optimisation of an elastomeric honeycomb for impact mitigation in helmet liners.

Auxetic metamaterial optimisation for head impact mitigation in American football (2021)
Journal Article
Hanna, B., Adams, R., Townsend, S., Robinson, M., Soe, S., Stewart, M., …Theobald, P. (2021). Auxetic metamaterial optimisation for head impact mitigation in American football. International Journal of Impact Engineering, 157, Article 103991. https://doi.org/10.1016/j.ijimpeng.2021.103991

American football has a comparatively high rate of sports-related concussions, despite mitigating strategies including the use of protective helmets. The traditional energy absorbing component, elastomeric foam pads, have limited scope for leveraging... Read More about Auxetic metamaterial optimisation for head impact mitigation in American football.

Investigating the dynamic compression response of elastomeric, additively manufactured fluid-filled structures via experimental and finite element analyses (2021)
Journal Article
Soe, S., Adams, R., Hossain, M., & Theobald, P. (2021). Investigating the dynamic compression response of elastomeric, additively manufactured fluid-filled structures via experimental and finite element analyses. Additive Manufacturing, 39, 101885. https://doi.org/10.1016/j.addma.2021.101885

This study evaluates a fluid-filled, closed-cell lattice as a novel route to reducing peak acceleration in impact environments. A conical structure was designed and built using fused filament fabrication. One structure was manufactured hollow (100% a... Read More about Investigating the dynamic compression response of elastomeric, additively manufactured fluid-filled structures via experimental and finite element analyses.