Skip to main content

Research Repository

Advanced Search

Outputs (16)

A spiking neural network model of rodent head direction calibrated with landmark free learning (2022)
Journal Article
Stentiford, R., Knowles, T. C., & Pearson, M. J. (2022). A spiking neural network model of rodent head direction calibrated with landmark free learning. Frontiers in Neurorobotics, 16, -. https://doi.org/10.3389/fnbot.2022.867019

Maintaining a stable estimate of head direction requires both self-motion (idiothetic) information and environmental (allothetic) anchoring. In unfamiliar or dark environments idiothetic drive can maintain a rough estimate of heading but is subject t... Read More about A spiking neural network model of rodent head direction calibrated with landmark free learning.

Multimodal Representation Learning for Place Recognition Using Deep Hebbian Predictive Coding (2021)
Journal Article
Pearson, M. J., Dora, S., Struckmeier, O., Knowles, T. C., Mitchinson, B., Tiwari, K., …Pennartz, C. M. (2021). Multimodal Representation Learning for Place Recognition Using Deep Hebbian Predictive Coding. Frontiers in Robotics and AI, 8, Article 732023. https://doi.org/10.3389/frobt.2021.732023

Recognising familiar places is a competence required in many engineering applications that interact with the real world such as robot navigation. Combining information from different sensory sources promotes robustness and accuracy of place recogniti... Read More about Multimodal Representation Learning for Place Recognition Using Deep Hebbian Predictive Coding.

A multizone cerebellar chip for bioinspired adaptive robot control and sensorimotor processing (2021)
Journal Article
Wilson, E. D., Assaf, T., Rossiter, J. M., Dean, P., Porrill, J., Anderson, S. R., & Pearson, M. J. (2021). A multizone cerebellar chip for bioinspired adaptive robot control and sensorimotor processing. Interface, 18(174), https://doi.org/10.1098/rsif.2020.0750

The cerebellum is a neural structure essential for learning, which is connected via multiple zones to many different regions of the brain, and is thought to improve human performance in a large range of sensory, motor and even cognitive processing ta... Read More about A multizone cerebellar chip for bioinspired adaptive robot control and sensorimotor processing.

Fast, flexible closed-loop feedback: Tracking movement in “real-millisecond-time” (2019)
Journal Article
Sehara, K., Bahr, V., Mitchinson, B., Pearson, M. J., Larkum, M. E., & Sachdev, R. N. S. (2019). Fast, flexible closed-loop feedback: Tracking movement in “real-millisecond-time”. eNeuro, 6(6), https://doi.org/10.1523/eneuro.0147-19.2019

© 2019 Sehara et al. One of the principal functions of the brain is to control movement and rapidly adapt behavior to a changing external environment. Over the last decades our ability to monitor activity in the brain, manipulate it while also manipu... Read More about Fast, flexible closed-loop feedback: Tracking movement in “real-millisecond-time”.

Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomerbased artificial muscle (2016)
Journal Article
Pearson, M. J., Wilson, E. D., Assaf, T., Pearson, M., Rossiter, J. M., Anderson, S. R., …Dean, P. (2016). Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomerbased artificial muscle. Interface, 13(122), https://doi.org/10.1098/rsif.2016.0547

© 2016 The Author(s) Published by the Royal Society. All rights reserved. Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mec... Read More about Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomerbased artificial muscle.

Visual-tactile sensory map calibration of a biomimetic whiskered robot (2016)
Journal Article
Assaf, T., Wilson, E. D., Anderson, S., Dean, P., Porrill, J., & Pearson, M. J. (2016). Visual-tactile sensory map calibration of a biomimetic whiskered robot. IEEE International Conference on Robotics and Automation, 2016-June, 967-972. https://doi.org/10.1109/ICRA.2016.7487228

© 2016 IEEE. We present an adaptive filter model of cerebellar function applied to the calibration of a tactile sensory map to improve the accuracy of directed movements of a robotic manipulator. This is demonstrated using a platform called Bellabot... Read More about Visual-tactile sensory map calibration of a biomimetic whiskered robot.

Measuring the local viscosity and velocity of fluids using a biomimetic tactile whisker (2015)
Journal Article
Pipe, T., Rooney, T., Pearson, M. J., & Pipe, A. G. (2015). Measuring the local viscosity and velocity of fluids using a biomimetic tactile whisker. Lecture Notes in Artificial Intelligence, 9222, 75-85. https://doi.org/10.1007/978-3-319-22979-9_7

© Springer International Publishing Switzerland 2015. A novel technique for determining the relative visco-density of fluids using an actuated flexible beam inspired by the tactile whiskers of marine mammals is presented. This was developed for the i... Read More about Measuring the local viscosity and velocity of fluids using a biomimetic tactile whisker.

Biohybrid control of general linear systems using the adaptive filter model of cerebellum (2015)
Journal Article
Wilson, E. D., Assaf, T., Pearson, M. J., Rossiter, J. M., Dean, P., Anderson, S. R., & Porrill, J. (2015). Biohybrid control of general linear systems using the adaptive filter model of cerebellum. Frontiers in Neurorobotics, 9(JUL), https://doi.org/10.3389/fnbot.2015.00005

© 2015 Wilson, Assaf, Pearson, Rossiter, Dean, Anderson and Porrill. The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensor... Read More about Biohybrid control of general linear systems using the adaptive filter model of cerebellum.

High speed switched, multi-channel drive for high voltage dielectric actuation of a biomimetic sensory array (2014)
Journal Article
Pearson, M., & Assaf, T. (2014). High speed switched, multi-channel drive for high voltage dielectric actuation of a biomimetic sensory array. Lecture Notes in Artificial Intelligence, 8608 LNAI, 414-416. https://doi.org/10.1007/978-3-319-09435-9_47

Electro-Active Polymers (EAP) have been described as artificial muscles due to their composition andmuscle-like dynamics [1]. Consequently they have attracted a lot of attention from the biomimetic robotics research community and heralded as a potent... Read More about High speed switched, multi-channel drive for high voltage dielectric actuation of a biomimetic sensory array.

Biomimetic tactile target acquisition, tracking and capture (2013)
Journal Article
Prescott, T. J., Pearson, M. J., Mitchinson, B., Pearson, M., Pipe, A. G., & Prescott, T. (2014). Biomimetic tactile target acquisition, tracking and capture. Robotics and Autonomous Systems, 62(3), 366-375. https://doi.org/10.1016/j.robot.2013.08.013

Good performance in unstructured/uncertain environments is an ongoing problem in robotics; in biology, it is an everyday observation. Here, we model a particular biological system - hunting in the Etruscan shrew - as a case study in biomimetic robot... Read More about Biomimetic tactile target acquisition, tracking and capture.