Emma D. Wilson
Biohybrid control of general linear systems using the adaptive filter model of cerebellum
Wilson, Emma D.; Assaf, Tareq; Pearson, Martin J.; Rossiter, Jonathan M.; Dean, Paul; Anderson, Sean R.; Porrill, John
Authors
Tareq Assaf
Martin Pearson Martin.Pearson@uwe.ac.uk
Senior Lecturer
Jonathan M. Rossiter
Paul Dean
Sean R. Anderson
John Porrill
Abstract
© 2015 Wilson, Assaf, Pearson, Rossiter, Dean, Anderson and Porrill. The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks.
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 29, 2015 |
Publication Date | Jan 1, 2015 |
Deposit Date | Jan 28, 2016 |
Publicly Available Date | Apr 6, 2017 |
Journal | Frontiers in Neurorobotics |
Electronic ISSN | 1662-5218 |
Publisher | Frontiers Media |
Peer Reviewed | Peer Reviewed |
Volume | 9 |
Issue | JUL |
DOI | https://doi.org/10.3389/fnbot.2015.00005 |
Keywords | cerebellum, adaptive control, adaptive filter, electroactive polymer, artificial muscles, soft robotics |
Public URL | https://uwe-repository.worktribe.com/output/831110 |
Publisher URL | http://dx.doi.org/10.3389/fnbot.2015.00005 |
Contract Date | Apr 6, 2017 |
Files
fnbot-09-00005.pdf
(5.3 Mb)
PDF
You might also like
Ring attractors as the basis of a biomimetic navigation system
(2023)
Journal Article
Feeling the pressure: The influence of vibrotactile patterns on feedback perception
(2022)
Presentation / Conference Contribution
Integrating spiking neural networks and deep learning algorithms on the neurorobotics platform
(2022)
Presentation / Conference Contribution
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search