Skip to main content

Research Repository

Advanced Search

Outputs (20)

Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation (2019)
Journal Article
Walter, X. A., Santoro, C., Greenman, J., & Ieropoulos, I. A. (2019). Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation. Bioelectrochemistry, 127, 68-75. https://doi.org/10.1016/j.bioelechem.2019.01.004

© 2019 The Authors The scalability of bioelectrochemical systems is a key parameter for their practical implementation in the real-world. Up until now, only urine-fed self-stratifying microbial fuel cells (SSM-MFCs) have been shown to be scalable in... Read More about Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation.

Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell (2018)
Journal Article
Walter, X. A., Greenman, J., & Ieropoulos, I. (2018). Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell. Bioelectrochemistry, 123, 119-124. https://doi.org/10.1016/j.bioelechem.2018.04.011

© 2018 The Authors The recently developed self-stratifying membraneless microbial fuel cell (SSM-MFC) has been shown as a promising concept for urine treatment. The first prototypes employed cathodes made of activated carbon (AC) and polytetrafluoroe... Read More about Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell.

Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height (2018)
Journal Article
Walter, X. A., Santoro, C., Greenman, J., & Ieropoulos, I. (2019). Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height. International Journal of Hydrogen Energy, 44(9), 4524-4532. https://doi.org/10.1016/j.ijhydene.2018.07.033

© 2018 The Author(s) Power generation of bioelectrochemical systems (BESs) is a very important electrochemical parameter to consider particularly when the output has to be harvested for practical applications. This work studies the effect of cathode... Read More about Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height.

Development of small scale ceramic Microbial Fuel Cells for clean energy extraction from urine (2018)
Presentation / Conference
Gajda, I., Walter, X. A., Obata, T., Greenman, J., & Ieropoulos, I. (2018, June). Development of small scale ceramic Microbial Fuel Cells for clean energy extraction from urine. Presented at 14th International Ceramics Congress 2018, Perugia, Italy

During the last 20 years great interest in Microbial Fuel Cells (MFCs) has intensified due to the extraction of clean electricity from waste streams such as urine. The technology is based on ceramic built MFCs in which the terracotta chassis is also... Read More about Development of small scale ceramic Microbial Fuel Cells for clean energy extraction from urine.

PEE POWER® urinal II - Urinal scale-up with microbial fuel cell scale-down for improved lighting (2018)
Journal Article
Walter, X. A., Merino-Jiménez, I., Greenman, J., & Ieropoulos, I. (2018). PEE POWER® urinal II - Urinal scale-up with microbial fuel cell scale-down for improved lighting. Journal of Power Sources, 392, 150-158. https://doi.org/10.1016/j.jpowsour.2018.02.047

© 2018 The Authors A novel design of microbial fuel cells (MFC) fuelled with undiluted urine was demonstrated to be an efficient power source for decentralised areas, but had only been tested under controlled laboratory conditions. Hence, a field-tri... Read More about PEE POWER® urinal II - Urinal scale-up with microbial fuel cell scale-down for improved lighting.

Photoferrotrophy: Remains of an ancient photosynthesis in modern environments (2017)
Journal Article
Walter, X. A., Camacho, A., Walter, X. A., Picazo, A., & Zopfi, J. (2017). Photoferrotrophy: Remains of an ancient photosynthesis in modern environments. Frontiers in Microbiology, 8(MAR), 323. https://doi.org/10.3389/fmicb.2017.00323

© 2017 Camacho, Walter, Picazo and Zopfi. Photoferrotrophy, the process by which inorganic carbon is fixed into organic matter using light as an energy source and reduced iron [Fe(II)] as an electron donor, has been proposed as one of the oldest phot... Read More about Photoferrotrophy: Remains of an ancient photosynthesis in modern environments.

Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging (2016)
Journal Article
Walter, X. A., Stinchcombe, A., Greenman, J., & Ieropoulos, I. (2017). Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging. Applied Energy, 192, 575-581. https://doi.org/10.1016/j.apenergy.2016.06.006

© 2016 The Authors This study reports for the first time the full charging of a state-of-the-art mobile smartphone, using Microbial Fuel Cells fed with urine. This was possible by employing a new design of MFC that allowed scaling-up without power de... Read More about Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging.

The practical implementation of microbial fuel cell technology (2016)
Book Chapter
Ieropoulos, I., Winfield, J., Gajda, I., Walter, X. A., Papacharalampos, G., Merino Jimenez, I., …Greenman, J. (2016). The practical implementation of microbial fuel cell technology. In K. Scott, & E. Hao Yu (Eds.), Microbial Electrochemical and Fuel Cells (357-380). Woodhead (Elsevier). https://doi.org/10.1016/B978-1-78242-375-1.00012-5

© 2016 Elsevier Ltd. All rights reserved. New green technologies are emerging in response to decades of damaging human activity. Among those are microbial fuel cells (MFCs), electric transducers that transform wet organic matter into electricity via... Read More about The practical implementation of microbial fuel cell technology.

Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors (2015)
Journal Article
Walter, X. A., You, J., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors. Sensing and Bio-Sensing Research, 6, 43-50. https://doi.org/10.1016/j.sbsr.2015.11.007

© 2015 The Authors. Stability and reliability of microbial fuel cell anodic biofilms, consisting of mixed cultures, were investigated in a continuously fed system. Two groups of anodic biofilm matured with different substrates, acetate and casein for... Read More about Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors.

Fade to Green: A Biodegradable Stack of Microbial Fuel Cells (2015)
Journal Article
Winfield, J., Chambers, L. D., Rossiter, J., Stinchcombe, A., Walter, X. A., Greenman, J., & Ieropoulos, I. (2015). Fade to Green: A Biodegradable Stack of Microbial Fuel Cells. ChemSusChem, 8(16), 2705-2712. https://doi.org/10.1002/cssc.201500431

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. The focus of this study is the development of biodegradable microbial fuel cells (MFCs) able to produce useful power. Reactors with an 8mL chamber volume were designed using all biodegradable produ... Read More about Fade to Green: A Biodegradable Stack of Microbial Fuel Cells.