Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC (2015)
Journal Article
Taghavi, M., Stinchcombe, A., Greenman, J., Mattoli, V., Beccai, L., Mazzolai, B., …Ieropoulos, I. A. (2016). Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC. Bioinspiration and Biomimetics, 11(1), Article 016001. https://doi.org/10.1088/1748-3190/11/1/016001

© 2015 IOP Publishing Ltd. The first self-sufficient system, powered by a wearable energy generator based on microbial fuel cell (MFC) technology is introduced. MFCs made from compliant material were developed in the frame of a pair of socks, which w... Read More about Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC.

Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors (2015)
Journal Article
Walter, X. A., You, J., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors. Sensing and Bio-Sensing Research, 6, 43-50. https://doi.org/10.1016/j.sbsr.2015.11.007

© 2015 The Authors. Stability and reliability of microbial fuel cell anodic biofilms, consisting of mixed cultures, were investigated in a continuously fed system. Two groups of anodic biofilm matured with different substrates, acetate and casein for... Read More about Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors.

Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture (2015)
Journal Article
Gajda, I., Greenman, J., Melhuish, C., Santoro, C., Li, B., Cristiani, P., & Ieropoulos, I. (2015). Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture. Water Research, 86, 108-115. https://doi.org/10.1016/j.watres.2015.08.014

© 2015 The Authors. In Microbial Fuel Cells (MFCs), the recovery of water can be achieved with the help of both active (electro-osmosis), and passive (osmosis) transport pathways of electrolyte through the semi-permeable selective separator. The elec... Read More about Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture.

Self-sustainable electricity production from algae grown in a microbial fuel cell system (2015)
Journal Article
Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass and Bioenergy, 82, 87-93. https://doi.org/10.1016/j.biombioe.2015.05.017

© 2015 The Authors. This paper describes the potential for algal biomass production in conjunction with wastewater treatment and power generation within a fully biotic Microbial Fuel Cell (MFC). The anaerobic biofilm in the anodic half-cell is genera... Read More about Self-sustainable electricity production from algae grown in a microbial fuel cell system.

Simultaneous electricity generation and microbially-assisted electrosynthesis in ceramic MFCs (2015)
Journal Article
Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). Simultaneous electricity generation and microbially-assisted electrosynthesis in ceramic MFCs. Bioelectrochemistry, 104, 58-64. https://doi.org/10.1016/j.bioelechem.2015.03.001

© 2015 Elsevier B.V. To date, the development of microbially assisted synthesis in Bioelectrochemical Systems (BESs) has focused on mechanisms that consume energy in order to drive the electrosynthesis process. This work reports - for the first time... Read More about Simultaneous electricity generation and microbially-assisted electrosynthesis in ceramic MFCs.

A novel small scale Microbial Fuel Cell design for increased electricity generation and waste water treatment (2015)
Journal Article
Papaharalabos, G., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). A novel small scale Microbial Fuel Cell design for increased electricity generation and waste water treatment. International Journal of Hydrogen Energy, 40(11), 4263-4268. https://doi.org/10.1016/j.ijhydene.2015.01.117

© 2015 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. Microbial Fuel Cells (MFCs) are a sustainable energy technology with minimal carbon footprint, which is promising for wastewater remediation and generation of u... Read More about A novel small scale Microbial Fuel Cell design for increased electricity generation and waste water treatment.