Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Kombucha electronics: Electronic circuits on kombucha mats (2023)
Journal Article
Adamatzky, A., Tarabella, G., Phillips, N., Chiolerio, A., D’Angelo, P., Nikolaidou, A., & Sirakoulis, G. C. (2023). Kombucha electronics: Electronic circuits on kombucha mats. Scientific Reports, 13(1), 9367. https://doi.org/10.1038/s41598-023-36244-8

A kombucha is a tea and sugar fermented by over sixty kinds of yeasts and bacteria. This symbiotic community produces kombucha mats, which are cellulose-based hydrogels. The kombucha mats can be used as an alternative to animal leather in industry an... Read More about Kombucha electronics: Electronic circuits on kombucha mats.

Transfer functions of proteinoid microspheres (2023)
Journal Article
Mougkogiannis, P., Phillips, N., & Adamatzky, A. (2023). Transfer functions of proteinoid microspheres. BioSystems, 227-228, https://doi.org/10.1016/j.biosystems.2023.104892

Proteinoids, or thermal proteins, are inorganic entities formed by heating amino acids to their melting point and commencing polymerisation to form polymeric chains. Typically, their diameters range from 1 μm to 10 μm. Some amino acids incorporated i... Read More about Transfer functions of proteinoid microspheres.

Electrical response of fungi to changing moisture content (2023)
Journal Article
Phillips, N., Gandia, A., & Adamatzky, A. (2023). Electrical response of fungi to changing moisture content. Fungal Biology and Biotechnology, 10(1), Article 8. https://doi.org/10.1186/s40694-023-00155-0

Mycelium-bound composites are potential alternatives to conventional materials for a variety of applications, including thermal and acoustic building panels and product packaging. If the reactions of live mycelium to environmental conditions and stim... Read More about Electrical response of fungi to changing moisture content.