Skip to main content

Research Repository

Advanced Search

Outputs (30)

Micro-porous layer (MPL)-based anode for microbial fuel cells (2014)
Journal Article
You, J., Santoro, C., Greenman, J., Melhuish, C., Cristiani, P., Li, B., & Ieropoulos, I. (2014). Micro-porous layer (MPL)-based anode for microbial fuel cells. International Journal of Hydrogen Energy, 39(36), 21811-21818. https://doi.org/10.1016/j.ijhydene.2014.07.136

© 2014 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. Two different anode materials, carbon veil (CV) and carbon cloth (CC), were modified with a micro-porous layer (MPL) in microbial fuel cells (MFCs). When the bi... Read More about Micro-porous layer (MPL)-based anode for microbial fuel cells.

Simultaneous electricity generation and microbially-assisted electrosynthesis in MFCs (2014)
Presentation / Conference
Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. (2014, October). Simultaneous electricity generation and microbially-assisted electrosynthesis in MFCs. Paper presented at 226th ECS Meeting,Electrochemical Society, Cancun, Mexico

Microbial Fuel Cells (MFCs) are bio-electrochemical transducers that generate electricity as a direct result of microbial metabolism, when breaking down organic matter for continuous growth and maintenance. On the other hand, Microbial Electrolysis C... Read More about Simultaneous electricity generation and microbially-assisted electrosynthesis in MFCs.

Intermittent load implementation in microbial fuel cells improves power performance (2014)
Journal Article
Greenman, J., Walter, X. A., & Ieropoulos, I. (2014). Intermittent load implementation in microbial fuel cells improves power performance. Bioresource Technology, 172, 365-372. https://doi.org/10.1016/j.biortech.2014.09.034

© 2014 Elsevier Ltd. This study reports on the response of small-scale MFCs to intermittent loading, in terms of power output over time. The aim was to understand the evolution with time of power output under different duty cycles, in conditions clos... Read More about Intermittent load implementation in microbial fuel cells improves power performance.

Artificial photosynthesis coupled with electricity generation - microbial fuel cells as artificial plants (2014)
Presentation / Conference
Gajda, I., Greenman, J., Stinchcombe, A., Melhuish, C., & Ieropoulos, I. (2014, July). Artificial photosynthesis coupled with electricity generation - microbial fuel cells as artificial plants. Paper presented at ALIFE 14: The Fourteenth International Conference on the Synthesis and Simulation of Living Systems, NY, USA

To meet the global goal of carbon reduction process there is a need to develop an artificial system that may act as an autonomous CO2 scrubber. This paper describes the direct electricity generation by the Microbial Fuel Cell with the simultaneous bi... Read More about Artificial photosynthesis coupled with electricity generation - microbial fuel cells as artificial plants.

Water formation at the cathode and sodium recovery using Microbial Fuel Cells (MFCs) (2014)
Journal Article
Gajda, I., Greenman, J., Melhuish, C., Santoro, C., Li, B., Cristiani, P., & Ieropoulos, I. (2014). Water formation at the cathode and sodium recovery using Microbial Fuel Cells (MFCs). Sustainable Energy Technologies and Assessments, 7, 187-194. https://doi.org/10.1016/j.seta.2014.05.001

Microbial Fuel Cells (MFCs) utilise biodegradable carbon compounds in organic waste to generate electric current. The aim of this work was to enhance MFC performance by using low cost and catalyst (platinum)-free cathode materials. The results showed... Read More about Water formation at the cathode and sodium recovery using Microbial Fuel Cells (MFCs).

Small-scale microbial fuel cells utilising uric salts (2014)
Journal Article
You, J., Greenman, J., Melhuish, C., & Ieropoulos, I. (2014). Small-scale microbial fuel cells utilising uric salts. Sustainable Energy Technologies and Assessments, 6, 60-63. https://doi.org/10.1016/j.seta.2014.01.005

With exhausting fossil fuels and increasing greenhouse gas emissions, numerous attempts, to overcome future energy challenges, are being pursued. In this study, small-scale microbial fuel cells (MFCs, 0.7mL anodic chamber volume) were built to invest... Read More about Small-scale microbial fuel cells utilising uric salts.

Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells (2013)
Journal Article
Winfield, J., Greenman, J., Huson, D., & Ieropoulos, I. (2013). Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess and Biosystems Engineering, 36(12), 1913-1921. https://doi.org/10.1007/s00449-013-0967-6

The properties of earthenware and terracotta were investigated in terms of structural integrity and ion conductivity, in two microbial fuel cell (MFC) designs. Parameters such as wall thickness (4, 8, 18 mm), porosity and cathode hydration were analy... Read More about Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells.

Biodegradation and proton exchange using natural rubber in microbial fuel cells (2013)
Journal Article
Winfield, J., Ieropoulos, I., Rossiter, J., Greenman, J., & Patton, D. (2013). Biodegradation and proton exchange using natural rubber in microbial fuel cells. Biodegradation, 24(6), 733-739. https://doi.org/10.1007/s10532-013-9621-x

Microbial fuel cells (MFCs) generate electricity from waste but to date the technology's development and scale-up has been held-up by the need to incorporate expensive materials. A costly but vital component is the ion exchange membrane (IEM) which c... Read More about Biodegradation and proton exchange using natural rubber in microbial fuel cells.

The power of glove: Soft microbial fuel cell for low-power electronics (2013)
Journal Article
Winfield, J., Chambers, L. D., Stinchcombe, A., Rossiter, J., & Ieropoulos, I. (2014). The power of glove: Soft microbial fuel cell for low-power electronics. Journal of Power Sources, 249, 327-332. https://doi.org/10.1016/j.jpowsour.2013.10.096

A novel, soft microbial fuel cell (MFC) has been constructed using the finger-piece of a standard laboratory natural rubber latex glove. The natural rubber serves as structural and proton exchange material whilst untreated carbon veil is used for the... Read More about The power of glove: Soft microbial fuel cell for low-power electronics.