Skip to main content

Research Repository

Advanced Search

Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride (2016)
Journal Article
Winfield, J., Greenman, J., Dennis, J., & Ieropoulos, I. (2016). Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride. Journal of Chemical Technology and Biotechnology, 91(1), 138-143. https://doi.org/10.1002/jctb.4552

© 2014 Society of Chemical Industry. BACKGROUND: Ferric chloride (FeCl3) is widely used as a flocculating agent during wastewater treatment but can detrimentally lower pH and increase iron concentration. Microbial fuel cells (MFCs) are a promising te... Read More about Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride.

Biodegradation and proton exchange using natural rubber in microbial fuel cells (2013)
Journal Article
Winfield, J., Ieropoulos, I., Rossiter, J., Greenman, J., & Patton, D. (2013). Biodegradation and proton exchange using natural rubber in microbial fuel cells. Biodegradation, 24(6), 733-739. https://doi.org/10.1007/s10532-013-9621-x

Microbial fuel cells (MFCs) generate electricity from waste but to date the technology's development and scale-up has been held-up by the need to incorporate expensive materials. A costly but vital component is the ion exchange membrane (IEM) which c... Read More about Biodegradation and proton exchange using natural rubber in microbial fuel cells.

Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells (2013)
Journal Article
Winfield, J., Greenman, J., Huson, D., & Ieropoulos, I. (2013). Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess and Biosystems Engineering, 36(12), 1913-1921. https://doi.org/10.1007/s00449-013-0967-6

The properties of earthenware and terracotta were investigated in terms of structural integrity and ion conductivity, in two microbial fuel cell (MFC) designs. Parameters such as wall thickness (4, 8, 18 mm), porosity and cathode hydration were analy... Read More about Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells.

Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine (2013)
Journal Article
Greenman, J., Ieropoulos, I., Santoro, C., Ieropoulos, I., Greenman, J., Cristiani, P., …Li, B. (2013). Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine. International Journal of Hydrogen Energy, 38(26), 11543-11551. https://doi.org/10.1016/j.ijhydene.2013.02.070

The potential of single chamber microbial fuel cells (SCMFC) to treat raw, fresh human urine was investigated. The power generation (55 μW) of the SCMFCs with platinum (Pt)-based cathode was higher than those with Pt-free cathodes (23 μW) at the begi... Read More about Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine.

Increased power output from micro porous layer (MPL) cathode microbial fuel cells (MFC) (2013)
Journal Article
Ieropoulos, I., Greenman, J., Melhuish, C., Papaharalabos, G., Greenman, J., Melhuish, C., …Ieropoulos, I. (2013). Increased power output from micro porous layer (MPL) cathode microbial fuel cells (MFC). International Journal of Hydrogen Energy, 38(26), 11552-11558. https://doi.org/10.1016/j.ijhydene.2013.05.138

Microbial fuel cells are bio-electrochemical transducers that utilise microorganisms to generate electricity, through the oxidation of organic matter. They consist of a negative anode and a positive cathode, separated by an ion selective membrane. Th... Read More about Increased power output from micro porous layer (MPL) cathode microbial fuel cells (MFC).

Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine (2013)
Journal Article
Santoro, C., Ieropoulos, I., Greenman, J., Cristiani, P., Vadas, T., Mackay, A., & Li, B. (2013). Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine. Journal of Power Sources, 238, 190-196. https://doi.org/10.1016/j.jpowsour.2013.03.095

This study investigated a novel treatment process for human urine in membraneless single-chamber microbial fuel cells (SCMFCs). The performances of SCMFCs with Pt-based or Pt-free cathode were tested for over 1000 hours of operation. The pH of the an... Read More about Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine.

Effects of sulphate addition and sulphide inhibition on microbial fuel cells (2013)
Journal Article
Greenman, J., Gálvez, A., Ieropoulos, I., Ieropoulos, I., Gálvez, A., & Greenman, J. (2013). Effects of sulphate addition and sulphide inhibition on microbial fuel cells. Enzyme and Microbial Technology, 52(1), 32-37. https://doi.org/10.1016/j.enzmictec.2012.10.002

The effects of adding sulphate in: (i) standard activated sludge microbial fuel cells (MFCs) and (ii) larger-scale leachate-treating columns - both as individual units and as a system connected in cascade - are reported. S-replete power output was ∼2... Read More about Effects of sulphate addition and sulphide inhibition on microbial fuel cells.

Microbial fuel cells: Scalability and their use in robotics (2011)
Book Chapter
Greenman, J., Ieropoulos, I., & Melhuish, C. (2011). Microbial fuel cells: Scalability and their use in robotics. In N. Eliaz (Ed.), Applications of Electrochemistry and Nanotechnology in Biology and Medicine I (239-290). Springer

This is probably the first written and relatively accurate description of microorganisms, made by the Roman scholar Marcus Terentius Varro (116-27 B.C.). It was then Anthony van Leeuwenhoek (ca. 1677) who, for the first time, observed little animals... Read More about Microbial fuel cells: Scalability and their use in robotics.

In vitro biofilm model for studying tongue flora and malodour (2007)
Journal Article
Spencer, P., Greenman, J., McKenzie, C., Gafan, G., Spratt, D., & Flanagan, A. (2007). In vitro biofilm model for studying tongue flora and malodour. Journal of Applied Microbiology, 103(4), 985-992. https://doi.org/10.1111/j.1365-2672.2007.03344.x

Aims: To develop a perfusion biofilm system to model tongue biofilm microflora and their physiological response to sulfur-containing substrates (S-substrates) in terms of volatile sulfide compound (VSC) production. Methods and Results: Tongue-scrape... Read More about In vitro biofilm model for studying tongue flora and malodour.

Use of a bioluminescent Pseudomonas aeruginosa strain within an in vitro microbiological system, as a model of wound infection, to assess the antimicrobial efficacy of wound dressings by monitoring light production (2007)
Journal Article
Thorn, R., Nelson, S., & Greenman, J. (2007). Use of a bioluminescent Pseudomonas aeruginosa strain within an in vitro microbiological system, as a model of wound infection, to assess the antimicrobial efficacy of wound dressings by monitoring light production. Antimicrobial Agents and Chemotherapy, 51(9), 3217-3224. https://doi.org/10.1128/AAC.00302-07

A bioluminescent Pseudomonas aeruginosa was incorporated into an in vitro static diffusion method to determine whether light output could be used as a measure of wound dressing efficacy. A significant linear correlation was observed between viable co... Read More about Use of a bioluminescent Pseudomonas aeruginosa strain within an in vitro microbiological system, as a model of wound infection, to assess the antimicrobial efficacy of wound dressings by monitoring light production.

In vitro method to assess the antimicrobial activity and potential efficacy of novel types of wound dressings (2005)
Journal Article
Thorn, R., Greenman, J., & Austin, A. J. (2005). In vitro method to assess the antimicrobial activity and potential efficacy of novel types of wound dressings. Journal of Applied Microbiology, 99(4), 895-901. https://doi.org/10.1111/j.1365-2672.2005.02671.x

Aims: To develop a simple, reproducible in vitro static diffusion method using cellulose disks and defined species to test antimicrobial efficacy of wound dressings. Methods and Results: Cellulose disks were inoculated by immersion in cell suspension... Read More about In vitro method to assess the antimicrobial activity and potential efficacy of novel types of wound dressings.

Study on the organoleptic intensity scale for measuring oral malodor (2004)
Journal Article
Spencer, P., Duffield, J., Greenman, J., Rosenberg, M., Corry, D., Saad, S., …El-Maaytah, M. (2004). Study on the organoleptic intensity scale for measuring oral malodor. Journal of Dental Research, 83(1), 81-85. https://doi.org/10.1177/154405910408300116

The 0-5 organoleptic scale is used widely in breath research and in trials to measure the efficacy of anti-odor agents. However, the precise relationship between odor scores and gas concentrations of target odorants is unknown. The purpose of this st... Read More about Study on the organoleptic intensity scale for measuring oral malodor.