Skip to main content

Research Repository

Advanced Search

Impact of feedstock dilution on the performance of urine-fed ceramic and membrane-less microbial fuel cell cascades designs (2023)
Journal Article
Walter, X. A., You, J., Gajda, I., Greenman, J., & Ieropoulos, I. (2023). Impact of feedstock dilution on the performance of urine-fed ceramic and membrane-less microbial fuel cell cascades designs. Journal of Power Sources, 561(30), 232708. https://doi.org/10.1016/j.jpowsour.2023.232708

Recent advancements in the microbial fuel cell (MFC) field have led to the deployment of pilot-scale autonomous sanitation systems converting the organic content of urine into electricity to power lights in decentralised areas. Two designs have been... Read More about Impact of feedstock dilution on the performance of urine-fed ceramic and membrane-less microbial fuel cell cascades designs.

Autonomous energy harvesting and prevention of cell reversal in MFC stacks (2016)
Journal Article
Papaharalabos, G., Stinchcombe, A., Horsfield, I., Melhuish, C., Greenman, J., & Ieropoulos, I. (2017). Autonomous energy harvesting and prevention of cell reversal in MFC stacks. Journal of The Electrochemical Society, 164(3), H3047-H3051. https://doi.org/10.1149/2.0081703jes

© The Author(s) 2016. This study presents a novel method for avoiding cell reversal whilst optimising energy harvesting from stacked Microbial Fuel Cells (MFCs) by dynamically reconfiguring the electrical connections between them. The sequential chan... Read More about Autonomous energy harvesting and prevention of cell reversal in MFC stacks.

Toward Energetically Autonomous Foraging Soft Robots (2016)
Journal Article
Philamore, H., Ieropoulos, I., Stinchcombe, A., & Rossiter, J. (2016). Toward Energetically Autonomous Foraging Soft Robots. Soft Robotics, 3(4), 186-197. https://doi.org/10.1089/soro.2016.0020

© 2016, Mary Ann Liebert, Inc. A significant goal of robotics is to develop autonomous machines, capable of independent and collective operation free from human assistance. To operate with complete autonomy robots must be capable of independent movem... Read More about Toward Energetically Autonomous Foraging Soft Robots.

A review into the use of ceramics in microbial fuel cells (2016)
Journal Article
Winfield, J., Gajda, I., Greenman, J., & Ieropoulos, I. (2016). A review into the use of ceramics in microbial fuel cells. Bioresource Technology, 215, 296-303. https://doi.org/10.1016/j.biortech.2016.03.135

© 2016 The Authors. Microbial fuel cells (MFCs) offer great promise as a technology that can produce electricity whilst at the same time treat wastewater. Although significant progress has been made in recent years, the requirement for cheaper materi... Read More about A review into the use of ceramics in microbial fuel cells.

Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals (2016)
Journal Article
Gajda, I., Stinchcombe, A., Greenman, J., Melhuish, C., & Ieropoulos, I. (2017). Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals. International Journal of Hydrogen Energy, 42(3), 1813-1819. https://doi.org/10.1016/j.ijhydene.2016.06.161

© 2016 The Authors This paper describes the suitability of the Microbial Fuel Cell (MFC) for generation of electrical power with a simultaneous synthesis of active catholyte in the form of caustic solution. The active solution formed inside a terraco... Read More about Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals.

Microalgae as substrate in low cost terracotta-based microbial fuel cells: Novel application of the catholyte produced (2016)
Journal Article
Ieropoulos, I. A., Hanczyc, M. M., Greenman, J., Ortiz-Martínez, V. M., Gajda, I., Salar-García, M. J., …Ieropoulos, I. (2016). Microalgae as substrate in low cost terracotta-based microbial fuel cells: Novel application of the catholyte produced. Bioresource Technology, 209, 380-385. https://doi.org/10.1016/j.biortech.2016.02.083

© 2016 Elsevier Ltd. In this work, the by-product generated during the operation of cylindrical MFCs, made out of terracotta material, is investigated as a feasible means of degrading live microalgae for the first time. In addition to the low cost ma... Read More about Microalgae as substrate in low cost terracotta-based microbial fuel cells: Novel application of the catholyte produced.

Small scale ceramic MFCs for efficient energy harvesting from wastewater and full system development (2016)
Presentation / Conference
Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. (2016, May). Small scale ceramic MFCs for efficient energy harvesting from wastewater and full system development. Presented at The Electrochemical Society, 29th ECS Meeting, San Diego, CA, USA

The main aim of this work was to increase the efficiency of the ceramic based MFCs by compacting the design and exploring the ceramic support as the building block for small scale modular multi-unit systems. The improved energy density would then all... Read More about Small scale ceramic MFCs for efficient energy harvesting from wastewater and full system development.

Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser (2016)
Journal Article
Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. A. (2016). Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser. Scientific Reports, 6(25571), https://doi.org/10.1038/srep25571

This study presents a simple and sustainable Microbial Fuel Cell as a standalone, self-powered reactor for in situ wastewater electrolysis, recovering nitrogen from wastewater. A process is proposed whereby the MFC electrical performance drives the e... Read More about Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser.

Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column (2016)
Journal Article
Walter, X. A., Gajda, I., Forbes, S., Winfield, J., Greenman, J., & Ieropoulos, I. (2016). Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column. Biotechnology for Biofuels, 9(1), https://doi.org/10.1186/s13068-016-0504-3

© 2016 Walter et al. Background: The microbial fuel cell (MFC) is a technology in which microorganisms employ an electrode (anode) as a solid electron acceptor for anaerobic respiration. This results in direct transformation of chemical energy into e... Read More about Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column.

Study of the effects of ionic liquid-modified cathodes and ceramic separators on MFC performance (2016)
Journal Article
Ieropoulos, I., Hernández-Fernández, F. J., Greenman, J., Salar-García, M. J., Gajda, I., Ortiz-Martínez, V. M., …Ieropoulos, I. (2016). Study of the effects of ionic liquid-modified cathodes and ceramic separators on MFC performance. Chemical Engineering Journal, 291, 317-324. https://doi.org/10.1016/j.cej.2016.01.084

© 2016 Elsevier B.V. Ceramic-based MFC designs have proven to be a low cost alternative for power production and wastewater treatment. The use of ionic liquids in ceramic MFCs is explored for the first time in the present work in order to improve pow... Read More about Study of the effects of ionic liquid-modified cathodes and ceramic separators on MFC performance.

Regeneration of the power performance of cathodes affected by biofouling (2016)
Journal Article
Pasternak, G., Greenman, J., & Ieropoulos, I. (2016). Regeneration of the power performance of cathodes affected by biofouling. Applied Energy, 173, 431-437. https://doi.org/10.1016/j.apenergy.2016.04.009

© 2016 The Authors. Air cathode microbial fuel cells (MFCs) were used in a cascade-system, to treat neat human urine as the fuel. Their long-term operation caused biodeterioration and biofouling of the cathodes. The cathodes were made from two graphi... Read More about Regeneration of the power performance of cathodes affected by biofouling.

On hybrid circuits exploiting thermistive properties of slime mould (2016)
Journal Article
Walter, X. A., Horsfield, I., Mayne, R., Ieropoulos, I. A., & Adamatzky, A. (2016). On hybrid circuits exploiting thermistive properties of slime mould. Scientific Reports, 6(23924), https://doi.org/10.1038/srep23924

Slime mould Physarum polycephalum is a single cell visible by the unaided eye. Let the slime mould span two electrodes with a single protoplasmic tube: if the tube is heated to approximately ≈40 °C, the electrical resistance of the protoplasmic tube... Read More about On hybrid circuits exploiting thermistive properties of slime mould.

Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration (2016)
Journal Article
Gajda, I., Greenman, J., Melhuish, C., Santoro, C., & Ieropoulos, I. (2016). Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration. Bioresource Technology, 215, 285-289. https://doi.org/10.1016/j.biortech.2016.04.004

© 2016 The Authors. This work reports on the novel formation of caustic potash (KOH) directly on the MFC cathode locking carbon dioxide into potassium bicarbonate salt (kalicinite) while producing, instead of consuming electrical power. Using potassi... Read More about Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration.

Towards effective small scale microbial fuel cells for energy generation from urine (2016)
Journal Article
Chouler, J., Padgett, G. A., Cameron, P. J., Preuss, K., Titirici, M. M., Ieropoulos, I., & Di Lorenzo, M. (2016). Towards effective small scale microbial fuel cells for energy generation from urine. Electrochimica Acta, 192, 89-98. https://doi.org/10.1016/j.electacta.2016.01.112

© 2016 The Authors. Published by Elsevier Ltd. To resolve an increasing global demand in energy, a source of sustainable and environmentally friendly energy is needed. Microbial fuel cells (MFC) hold great potential as a sustainable and green bioener... Read More about Towards effective small scale microbial fuel cells for energy generation from urine.

From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density (2016)
Journal Article
Walter, X. A., Forbes, S., Greenman, J., & Ieropoulos, I. A. (2016). From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density. Sustainable Energy Technologies and Assessments, 14, 74-79. https://doi.org/10.1016/j.seta.2016.01.006

© 2016 The Authors. Achieving useful electrical power production with the MFC technology requires a plurality of units. Therefore, the main objective of much of the MFC research is to increase the power density of each unit. Collectives of MFCs will... Read More about From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density.

Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells (2016)
Journal Article
Pasternak, G., Greenman, J., & Ieropoulos, I. (2016). Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells. ChemSusChem, 9(1), 88-96. https://doi.org/10.1002/cssc.201501320

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Microbial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low-cost alternative to commercially available proton exchange membranes. The MFCs operated wi... Read More about Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells.

Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride (2016)
Journal Article
Winfield, J., Greenman, J., Dennis, J., & Ieropoulos, I. (2016). Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride. Journal of Chemical Technology and Biotechnology, 91(1), 138-143. https://doi.org/10.1002/jctb.4552

© 2014 Society of Chemical Industry. BACKGROUND: Ferric chloride (FeCl3) is widely used as a flocculating agent during wastewater treatment but can detrimentally lower pH and increase iron concentration. Microbial fuel cells (MFCs) are a promising te... Read More about Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride.

Slime Mould Controller for Microbial Fuel Cells (2016)
Journal Article
Taylor, B., Adamatzky, A., Greenman, J., & Ieropoulos, I. (2016). Slime Mould Controller for Microbial Fuel Cells. https://doi.org/10.1007/978-3-319-26662-6_14

Microbial fuels cells (MFCs) are bio-electrochemical transducers that generate energy from the metabolism of electro-active microorganisms. The organism Physarum polycephalum is a species of slime mould, which has demonstrated many novel and interest... Read More about Slime Mould Controller for Microbial Fuel Cells.

Microbial fuel cell - A self-powered wastewater electrolyser for electrocoagulation (2015)
Presentation / Conference
Gajda, I., Stinchcombe, A., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015, December). Microbial fuel cell - A self-powered wastewater electrolyser for electrocoagulation. Presented at EFC15 European Fuel Cell Technology & Applications - Piero Lunghi Conference, Naples, Italy

This abstract describes the suitability of the Microbial Fuel Cell (MFC) for generation of electrical power with a simultaneous synthesis of active catholyte in the form of caustic solution. The active solution was a product of self-powered electroly... Read More about Microbial fuel cell - A self-powered wastewater electrolyser for electrocoagulation.

Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC (2015)
Journal Article
Taghavi, M., Stinchcombe, A., Greenman, J., Mattoli, V., Beccai, L., Mazzolai, B., …Ieropoulos, I. A. (2016). Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC. Bioinspiration and Biomimetics, 11(1), Article 016001. https://doi.org/10.1088/1748-3190/11/1/016001

© 2015 IOP Publishing Ltd. The first self-sufficient system, powered by a wearable energy generator based on microbial fuel cell (MFC) technology is introduced. MFCs made from compliant material were developed in the frame of a pair of socks, which w... Read More about Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC.