Skip to main content

Research Repository

Advanced Search

Outputs (11)

Biodegradation and proton exchange using natural rubber in microbial fuel cells (2013)
Journal Article
Winfield, J., Ieropoulos, I., Rossiter, J., Greenman, J., & Patton, D. (2013). Biodegradation and proton exchange using natural rubber in microbial fuel cells. Biodegradation, 24(6), 733-739. https://doi.org/10.1007/s10532-013-9621-x

Microbial fuel cells (MFCs) generate electricity from waste but to date the technology's development and scale-up has been held-up by the need to incorporate expensive materials. A costly but vital component is the ion exchange membrane (IEM) which c... Read More about Biodegradation and proton exchange using natural rubber in microbial fuel cells.

Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells (2013)
Journal Article
Winfield, J., Greenman, J., Huson, D., & Ieropoulos, I. (2013). Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess and Biosystems Engineering, 36(12), 1913-1921. https://doi.org/10.1007/s00449-013-0967-6

The properties of earthenware and terracotta were investigated in terms of structural integrity and ion conductivity, in two microbial fuel cell (MFC) designs. Parameters such as wall thickness (4, 8, 18 mm), porosity and cathode hydration were analy... Read More about Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells.

The power of glove: Soft microbial fuel cell for low-power electronics (2013)
Journal Article
Winfield, J., Chambers, L. D., Stinchcombe, A., Rossiter, J., & Ieropoulos, I. (2014). The power of glove: Soft microbial fuel cell for low-power electronics. Journal of Power Sources, 249, 327-332. https://doi.org/10.1016/j.jpowsour.2013.10.096

A novel, soft microbial fuel cell (MFC) has been constructed using the finger-piece of a standard laboratory natural rubber latex glove. The natural rubber serves as structural and proton exchange material whilst untreated carbon veil is used for the... Read More about The power of glove: Soft microbial fuel cell for low-power electronics.

Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine (2013)
Journal Article
Greenman, J., Ieropoulos, I., Santoro, C., Ieropoulos, I., Greenman, J., Cristiani, P., …Li, B. (2013). Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine. International Journal of Hydrogen Energy, 38(26), 11543-11551. https://doi.org/10.1016/j.ijhydene.2013.02.070

The potential of single chamber microbial fuel cells (SCMFC) to treat raw, fresh human urine was investigated. The power generation (55 μW) of the SCMFCs with platinum (Pt)-based cathode was higher than those with Pt-free cathodes (23 μW) at the begi... Read More about Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine.

Increased power output from micro porous layer (MPL) cathode microbial fuel cells (MFC) (2013)
Journal Article
Ieropoulos, I., Greenman, J., Melhuish, C., Papaharalabos, G., Greenman, J., Melhuish, C., …Ieropoulos, I. (2013). Increased power output from micro porous layer (MPL) cathode microbial fuel cells (MFC). International Journal of Hydrogen Energy, 38(26), 11552-11558. https://doi.org/10.1016/j.ijhydene.2013.05.138

Microbial fuel cells are bio-electrochemical transducers that utilise microorganisms to generate electricity, through the oxidation of organic matter. They consist of a negative anode and a positive cathode, separated by an ion selective membrane. Th... Read More about Increased power output from micro porous layer (MPL) cathode microbial fuel cells (MFC).

Oxygenic phototrophic biofilms for improved cathode performance in microbial fuel cells (2013)
Journal Article
Ieropoulos, I. A., Walter, X. A., Walter, X. A., Greenman, J., & Ieropoulos, I. (2013). Oxygenic phototrophic biofilms for improved cathode performance in microbial fuel cells. Algal Research, 2(3), 183-187. https://doi.org/10.1016/j.algal.2013.02.002

The rate of oxygen reduction reaction in the cathodic chambers of microbial fuel cells (MFCs) is a typical limiting aspect of its performance. Recently, research on biocathodes has gained more interest as it allows circumventing the utilisation of ex... Read More about Oxygenic phototrophic biofilms for improved cathode performance in microbial fuel cells.

Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine (2013)
Journal Article
Santoro, C., Ieropoulos, I., Greenman, J., Cristiani, P., Vadas, T., Mackay, A., & Li, B. (2013). Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine. Journal of Power Sources, 238, 190-196. https://doi.org/10.1016/j.jpowsour.2013.03.095

This study investigated a novel treatment process for human urine in membraneless single-chamber microbial fuel cells (SCMFCs). The performances of SCMFCs with Pt-based or Pt-free cathode were tested for over 1000 hours of operation. The pH of the an... Read More about Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine.

Miniature microbial fuel cells and stacks for urine utilisation (2013)
Journal Article
Ieropoulos, I. A., Ieropoulos, I., Greenman, J., & Melhuish, C. (2013). Miniature microbial fuel cells and stacks for urine utilisation. International Journal of Hydrogen Energy, 38(1), 492-496. https://doi.org/10.1016/j.ijhydene.2012.09.062

MFCs are becoming a stronger contender in the area of alternative energy sources and show great promise in utilising a wide variety of organic sources. This paper describes the utilisation of neat undiluted urine as the main feedstock for different t... Read More about Miniature microbial fuel cells and stacks for urine utilisation.

Effects of sulphate addition and sulphide inhibition on microbial fuel cells (2013)
Journal Article
Greenman, J., Gálvez, A., Ieropoulos, I., Ieropoulos, I., Gálvez, A., & Greenman, J. (2013). Effects of sulphate addition and sulphide inhibition on microbial fuel cells. Enzyme and Microbial Technology, 52(1), 32-37. https://doi.org/10.1016/j.enzmictec.2012.10.002

The effects of adding sulphate in: (i) standard activated sludge microbial fuel cells (MFCs) and (ii) larger-scale leachate-treating columns - both as individual units and as a system connected in cascade - are reported. S-replete power output was ∼2... Read More about Effects of sulphate addition and sulphide inhibition on microbial fuel cells.

Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells (2013)
Journal Article
Chambers, L. D., Winfield, J., Chambers, L., Rossiter, J., & Ieropoulos, I. (2013). Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells. Bioresource Technology, 148, 480-486. https://doi.org/10.1016/j.biortech.2013.08.163

The long and short-term stability of two porous dependent ion exchange materials; starch-based compostable bags (BioBag) and ceramic, were compared to commercially available cation exchange membrane (CEM) in microbial fuel cells. Using bi-directional... Read More about Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells.