Skip to main content

Research Repository

Advanced Search

All Outputs (8)

Small scale microbial fuel cells and different ways of reporting output (2010)
Journal Article
Ieropoulos, I., Winfield, J., Greenman, J., & Melhuish, C. (2010). Small scale microbial fuel cells and different ways of reporting output. ECS Transactions, 28(9), 1-9. https://doi.org/10.1149/1.3492221

The present study, reports on the findings of connecting 2 stacks of 48 MFCs and the importance of maturity and acclimation for the anodic biofilms. Furthermore, an attempt is made to emphasize the importance of a universal unit for quantifying power... Read More about Small scale microbial fuel cells and different ways of reporting output.

MFCs and algae (2010)
Journal Article
Ieropoulos, I. A., Greenman, J., & Sauer, M. (2010). MFCs and algae. ECS Transactions, 28(9), 23-30. https://doi.org/10.1149/1.3492223

Algae and photosynthetic bacteria may be integrated or associated with Microbial Fuel Cells MFCs in a number of different ways including: (1) use of whole (intact) or lipid-extracted lyzed cells as the primary carbon-energy source for anodic microbia... Read More about MFCs and algae.

Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells (2010)
Journal Article
Ieropoulos, I., Winfield, J., & Greenman, J. (2010). Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresource Technology, 101(10), 3520-3525. https://doi.org/10.1016/j.biortech.2009.12.108

To process large volumes of wastewater, microbial fuel cells (MFCs) would require anodophilic bacteria preferably operating at high flow-rates. The effect of flow-rate on different microbial consortia was examined during anodic biofilm development, u... Read More about Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells.

Modelling the effects of pH on tongue biofilm using a sorbarod biofilm perfusion system (2010)
Journal Article
Taylor, B., & Greenman, J. (2010). Modelling the effects of pH on tongue biofilm using a sorbarod biofilm perfusion system. Journal of Breath Research, 4(1), 017107. https://doi.org/10.1088/1752-7155/4/1/017107

The pH of the tongue biofilm is likely to influence microbial composition and ecology with consequent effects on the metabolic activities and generation of volatile sulfur compounds (VSC) and other malodour gasses. The aim of this study was to identi... Read More about Modelling the effects of pH on tongue biofilm using a sorbarod biofilm perfusion system.

Improved energy output levels from small-scale Microbial Fuel Cells (2010)
Journal Article
Ieropoulos, I., Greenman, J., & Melhuish, C. (2010). Improved energy output levels from small-scale Microbial Fuel Cells. Bioelectrochemistry, 78(1), 44-50. https://doi.org/10.1016/j.bioelechem.2009.05.009

This study reports on the findings from the investigation into small-scale (6.25mL) MFCs, connected together as a network of multiple units. The MFCs contained unmodified (no catalyst) carbon fibre electrodes and for initial and later experiments, a... Read More about Improved energy output levels from small-scale Microbial Fuel Cells.

Evaluation of the efficacy of electrochemically activated solutions against nosocomial pathogens and bacterial endospores (2010)
Journal Article
Salisbury, V. C., Robinson, G. M., Lee, S. W., Greenman, J., & Reynolds, D. M. (2010). Evaluation of the efficacy of electrochemically activated solutions against nosocomial pathogens and bacterial endospores. Letters in Applied Microbiology, 50(3), 289-294. https://doi.org/10.1111/j.1472-765X.2009.02790.x

Aims: Electrochemically activated solutions (ECAS) are generated from halide salt solutions via specially designed electrolytic cells. The active solutions are known to possess high biocidal activity against a wide range of target microbial species,... Read More about Evaluation of the efficacy of electrochemically activated solutions against nosocomial pathogens and bacterial endospores.