Skip to main content

Research Repository

Advanced Search

All Outputs (85)

Landfill leachate treatment with microbial fuel cells; scale-up through plurality (2009)
Journal Article
Gálvez, A., Greenman, J., & Ieropoulos, I. (2009). Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresource Technology, 100(21), 5085-5091. https://doi.org/10.1016/j.biortech.2009.05.061

Three Microbial Fuel Cells (MFCs) were fluidically connected in series, with a single feed-line going into the 1st column through the 2nd column and finally as a single outflow coming from the 3rd column. Provision was also made for re-circulation in... Read More about Landfill leachate treatment with microbial fuel cells; scale-up through plurality.

Biological computing using perfusion anodophile biofilm electrodes (PABE) (2008)
Journal Article
Greenman, J., Ieropoulos, I., & Melhuish, C. (2008). Biological computing using perfusion anodophile biofilm electrodes (PABE). International Journal of Unconventional Computing, 4(1), 23-32

This paper presents a theoretical approach to biological computing, using biofilm electrodes by illustrating a simplified Pavlovian learning model. The theory behind this approach was based on empirical data produced from a prototype version of these... Read More about Biological computing using perfusion anodophile biofilm electrodes (PABE).

Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability (2008)
Journal Article
Ieropoulos, I., Greenman, J., & Melhuish, C. (2008). Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. International Journal of Energy Research, 32(13), 1228-1240. https://doi.org/10.1002/er.1419

The aim of this study was to compare the performance of three different sizes of microbial fuel cell (MFC) when operated under continuous flow conditions using acetate as the fuel substrate and show how small-scale multiple units may be best configur... Read More about Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability.

Energetically autonomous robots: Food for thought (2006)
Journal Article
Melhuish, C., Ieropoulos, I., Greenman, J., & Horsfield, I. (2006). Energetically autonomous robots: Food for thought. Autonomous Robots, 21(3), 187-198. https://doi.org/10.1007/s10514-006-6574-5

This paper reports on the robot EcoBot-II, which is designed to power itself solely by converting unrefined insect biomass into useful energy using on-board microbial fuel cells with oxygen cathodes. In bench experiments different 'fuels' (sugar, fru... Read More about Energetically autonomous robots: Food for thought.

EcoBot-II: An artificial agent with a natural metabolism (2005)
Journal Article
Ieropoulos, I., Melhuish, C., Greenman, J., & Horsfield, I. (2005). EcoBot-II: An artificial agent with a natural metabolism. International Journal of Advanced Robotic Systems, 2(4), 295-300. https://doi.org/10.5772/5777

In this paper we report the development of the robot EcoBot-II, which exhibits a primitive form of artificial symbiosis. Microbial Fuel Cells (MFCs) were used as the onboard energy supply, which consisted of bacterial cultures from sewage sludge and... Read More about EcoBot-II: An artificial agent with a natural metabolism.