Skip to main content

Research Repository

Advanced Search

Estimation of tool-tissue forces in robot-assisted minimally invasive surgery using neural networks (2019)
Journal Article
Abeywardena, S., Yuan, Q., Tzemanaki, A., Psomopoulou, E., Droukas, L., Melhuish, C., & Dogramadzi, S. (2019). Estimation of tool-tissue forces in robot-assisted minimally invasive surgery using neural networks. Frontiers in Robotics and AI, 6, Article 56. https://doi.org/10.3389/frobt.2019.00056

A new algorithm is proposed to estimate the tool-tissue force interaction in robot-assisted minimally invasive surgery which does not require the use of external force sensing. The proposed method utilizes the current of the motors of the surgical in... Read More about Estimation of tool-tissue forces in robot-assisted minimally invasive surgery using neural networks.

Toward Bio-Inspired Tactile Sensing Capsule Endoscopy for Detection of Submucosal Tumors (2016)
Journal Article
Pipe, T., Winstone, B., Melhuish, C., Pipe, A. G., Callaway, M., & Dogramadzi, S. (2017). Toward Bio-Inspired Tactile Sensing Capsule Endoscopy for Detection of Submucosal Tumors. IEEE Sensors Journal, 17(3), 848-857. https://doi.org/10.1109/JSEN.2016.2627798

© 2016 IEEE. Here, we present a method for lump characterization using a bio-inspired remote tactile sensing capsule endoscopy system. While current capsule endoscopy utilizes cameras to diagnose lesions on the surface of the gastrointestinal tract l... Read More about Toward Bio-Inspired Tactile Sensing Capsule Endoscopy for Detection of Submucosal Tumors.

Single motor actuated peristaltic wave generator for a soft bodied worm robot (2016)
Presentation / Conference
Winstone, B., Pipe, A. G., Melhuish, C., Callaway, M., Etoundi, A., & Dogramadzi, S. (2016, June). Single motor actuated peristaltic wave generator for a soft bodied worm robot. Paper presented at BioRob 2016 - IEEE International Conference on Biomedical Robotics and Biomechatronics, Singapore

This paper presents the design and development of a single motor actuated peristaltic worm robot with three segments using a bio-inspired method of locomotion with one actuator that achieves optimised worm like peristaltic motion. Each segment consis... Read More about Single motor actuated peristaltic wave generator for a soft bodied worm robot.