Skip to main content

Research Repository

Advanced Search

Waste to real energy: The first MFC powered mobile phone (2013)
Journal Article
Ieropoulos, I. A., Ieropoulos, I., Ledezma, P., Stinchcombe, A., Papaharalabos, G., Melhuish, C., & Greenman, J. (2013). Waste to real energy: The first MFC powered mobile phone. Physical Chemistry Chemical Physics, 15(37), 15312-15316. https://doi.org/10.1039/c3cp52889h

This communication reports for the first time the charging of a commercially available mobile phone, using Microbial Fuel Cells (MFCs) fed with real neat urine. The membrane-less MFCs were made out of ceramic material and employed plain carbon based... Read More about Waste to real energy: The first MFC powered mobile phone.

Photosynthetic cathodes for microbial fuel cells (2013)
Journal Article
Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. (2013). Photosynthetic cathodes for microbial fuel cells. International Journal of Hydrogen Energy, 38(26), 11559-11564. https://doi.org/10.1016/j.ijhydene.2013.02.111

One of the major limiting factors in the practical implementation of Microbial Fuel Cells is finding efficient and sustainable catalysts for the cathode half reaction, in an attempt to avoid expensive and/or toxic catalysts. The use of phototrophic o... Read More about Photosynthetic cathodes for microbial fuel cells.

Increased power output from micro porous layer (MPL) cathode microbial fuel cells (MFC) (2013)
Journal Article
Ieropoulos, I., Greenman, J., Melhuish, C., Papaharalabos, G., Greenman, J., Melhuish, C., …Ieropoulos, I. (2013). Increased power output from micro porous layer (MPL) cathode microbial fuel cells (MFC). International Journal of Hydrogen Energy, 38(26), 11552-11558. https://doi.org/10.1016/j.ijhydene.2013.05.138

Microbial fuel cells are bio-electrochemical transducers that utilise microorganisms to generate electricity, through the oxidation of organic matter. They consist of a negative anode and a positive cathode, separated by an ion selective membrane. Th... Read More about Increased power output from micro porous layer (MPL) cathode microbial fuel cells (MFC).

UAV horizon tracking using memristors and cellular automata visual processing (2013)
Presentation / Conference
Georgilas, I., Gale, E., Adamatzky, A., & Melhuish, C. (2013, August). UAV horizon tracking using memristors and cellular automata visual processing. Paper presented at TAROS 2013, The 14th Conference Towards Autonomous Robotic Systems, St Anne's College, Oxford, UK

Unmanned Aerial Vehicles (UAV)s can control their altitude and orientation using the horizon as a reference. Typically this task is performed via edge-detection vision processing techniques implemented in a computer or digital electronics. We demonst... Read More about UAV horizon tracking using memristors and cellular automata visual processing.