Skip to main content

Research Repository

Advanced Search

Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations (2019)
Journal Article
Tsompanas, M. A., You, J., Wallis, L., Greenman, J., & Ieropoulos, I. (2019). Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations. Journal of Power Sources, 436, Article 226832. https://doi.org/10.1016/j.jpowsour.2019.226832

© 2019 Elsevier B.V. Microbial fuel cells (MFCs) are gaining interest due to higher power production achieved by deep analysis of their characteristics and their effect on the overall efficiency. To date, investigations on MFC efficiency, can only be... Read More about Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations.

Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach (2019)
Journal Article
de Ramón-Fernández, A., Salar-García, M. J., Ruiz-Fernández, D., Greenman, J., & Ieropoulos, I. (2019). Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach. Applied Energy, 251, Article 113321. https://doi.org/10.1016/j.apenergy.2019.113321

© 2019 The Author(s) Microbial fuel cells (MFCs) is a promising technology that is able to simultaneously produce bioenergy and treat wastewater. Their potential large-scale application is still limited by the need of optimising their power density.... Read More about Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach.

Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation (2019)
Journal Article
Merino-Jimenez, I., Gonzalez-Juarez, F., Greenman, J., & Ieropoulos, I. (2019). Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation. Journal of Power Sources, 429, 30-37. https://doi.org/10.1016/j.jpowsour.2019.04.043

© 2019 The Authors Ceramic membranes for MFCs offer a low cost alternative to the expensive ion exchange membranes, whilst promoting catholyte accumulation. However, their physicochemical properties need to be optimised, in order to increase the powe... Read More about Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation.

Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes (2019)
Journal Article
Winfield, J., Greenman, J., & Ieropoulos, I. (2019). Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes. International Journal of Hydrogen Energy, 44(29), 15344-15354. https://doi.org/10.1016/j.ijhydene.2019.04.024

© 2019 The Authors The presence of air in the anode chamber of microbial fuel cells (MFCs)might be unavoidable in some applications. This study purposely exposed the anodic biofilm to air for sustained cycles using ceramic cylindrical MFCs. A method... Read More about Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes.

Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine (2019)
Journal Article
Salar Garcia, M. J., Santoro, C., Kodali, M., Serov, A., Artyushkova, K., Atanassov, P., & Ieropoulos, I. (2019). Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine. Journal of Power Sources, 425, 50-59. https://doi.org/10.1016/j.jpowsour.2019.03.052

© 2019 The Authors In recent years, the microbial fuel cell (MFC) technology has drawn the attention of the scientific community due to its ability to produce clean energy and treat different types of waste at the same time. Often, expensive catalyst... Read More about Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine.

Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine (2019)
Journal Article
Santoro, C., Walter, X. A., Soavi, F., Greenman, J., & Ieropoulos, I. (2019). Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine. Electrochimica Acta, 307, 241-252. https://doi.org/10.1016/j.electacta.2019.03.194

© 2019 The Authors A self-stratified microbial fuel cell fed with human urine with a total internal volume of 0.55 ml was investigated as an internal supercapacitor, for the first time. The internal self-stratification allowed the development of two... Read More about Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine.

Evaluation of electrode and solution area-based resistances enables quantitative comparisons of factors impacting microbial fuel cell performance (2019)
Journal Article
Rossi, R., Cario, B. P., Santoro, C., Yang, W., Saikaly, P. E., & Logan, B. E. (2019). Evaluation of electrode and solution area-based resistances enables quantitative comparisons of factors impacting microbial fuel cell performance. Environmental Science and Technology, 53(7), 3977-3986. https://doi.org/10.1021/acs.est.8b06004

Direct comparisons of microbial fuel cells based on maximum power densities are hindered by different reactor and electrode sizes, solution conductivities, and materials. We propose an alternative method here, the electrode potential slope (EPS) anal... Read More about Evaluation of electrode and solution area-based resistances enables quantitative comparisons of factors impacting microbial fuel cell performance.

Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells (2019)
Journal Article
Ieropoulos, I., Obata, O., Pasternak, G., & Greenman, J. (2019). Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells. Journal of Industrial Microbiology and Biotechnology, 46(5), 587-599. https://doi.org/10.1007/s10295-019-02153-x

Microbial fuel cell (MFC) technology is currently gaining recognition as one of the most promising bioenergy technologies of the future. One aspect of this technology that has received little attention is the disinfection of effluents and the fate of... Read More about Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells.

Towards monolithically printed MFCs: Development of a 3D-printable membrane electrode assembly (MEA) (2019)
Journal Article
Theodosiou, P., Greenman, J., & Ieropoulos, I. (2019). Towards monolithically printed MFCs: Development of a 3D-printable membrane electrode assembly (MEA). International Journal of Hydrogen Energy, 44(9), 4450-4462. https://doi.org/10.1016/j.ijhydene.2018.12.163

Additive manufacturing (3D-printing) and microbial fuel cells (MFCs) are two rapidly growing technologies which have been previously combined to advance the development of the latter. In the same line of work, this paper reports on the fabrication of... Read More about Towards monolithically printed MFCs: Development of a 3D-printable membrane electrode assembly (MEA).

Towards the optimisation of ceramic-based microbial fuel cells: A three-factor three-level response surface analysis design (2019)
Journal Article
Salar-García, M. J., de Ramón-Fernández, A., Ortiz-Martínez, V. M., Ruiz-Fernández, D., & Ieropoulos, I. (2019). Towards the optimisation of ceramic-based microbial fuel cells: A three-factor three-level response surface analysis design. Biochemical Engineering Journal, 144, 119-124. https://doi.org/10.1016/j.bej.2019.01.015

© 2019 The Authors Microbial fuel cells (MFCs) are an environment-friendly technology, which addresses two of the most important environmental issues worldwide: fossil fuel depletion and water scarcity. Modelling is a useful tool that allows us to un... Read More about Towards the optimisation of ceramic-based microbial fuel cells: A three-factor three-level response surface analysis design.

Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation (2019)
Journal Article
Walter, X. A., Santoro, C., Greenman, J., & Ieropoulos, I. A. (2019). Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation. Bioelectrochemistry, 127, 68-75. https://doi.org/10.1016/j.bioelechem.2019.01.004

© 2019 The Authors The scalability of bioelectrochemical systems is a key parameter for their practical implementation in the real-world. Up until now, only urine-fed self-stratifying microbial fuel cells (SSM-MFCs) have been shown to be scalable in... Read More about Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation.

Transport of Live Cells under Sterile Conditions Using a Chemotactic Droplet (2018)
Journal Article
Holler, S., Porcelli, C., Ieropoulos, I., & Hanczyc, M. (2018). Transport of Live Cells under Sterile Conditions Using a Chemotactic Droplet. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-018-26703-y

© 2018 The Author(s). 1-Decanol droplets, formed in an aqueous medium containing decanoate at high pH, become chemotactic when a chemical gradient is placed in the external aqueous environment. We investigated if such droplets can be used as transpor... Read More about Transport of Live Cells under Sterile Conditions Using a Chemotactic Droplet.

Increased power generation in supercapacitive microbial fuel cell stack using Fe–N–C cathode catalyst (2018)
Journal Article
Santoro, C., Kodali, M., Shamoon, N., Serov, A., Soavi, F., Merino-Jimenez, I., …Atanassov, P. (2019). Increased power generation in supercapacitive microbial fuel cell stack using Fe–N–C cathode catalyst. Journal of Power Sources, 412, 416-424. https://doi.org/10.1016/j.jpowsour.2018.11.069

© 2018 The Authors The anode and cathode electrodes of a microbial fuel cell (MFC) stack, composed of 28 single MFCs, were used as the negative and positive electrodes, respectively of an internal self-charged supercapacitor. Particularly, carbon vei... Read More about Increased power generation in supercapacitive microbial fuel cell stack using Fe–N–C cathode catalyst.

Dynamic evolution of anodic biofilm when maturing under different external resistive loads in microbial fuel cells. Electrochemical perspective (2018)
Journal Article
Pasternak, G., Greenman, J., & Ieropoulos, I. (2018). Dynamic evolution of anodic biofilm when maturing under different external resistive loads in microbial fuel cells. Electrochemical perspective. Journal of Power Sources, 400, 392-401. https://doi.org/10.1016/j.jpowsour.2018.08.031

© 2018 The Authors Appropriate inoculation and maturation may be crucial for shortening the startup time and maximising power output of Microbial Fuel Cells (MFCs), whilst ensuring stable operation. In this study we explore the relationship between e... Read More about Dynamic evolution of anodic biofilm when maturing under different external resistive loads in microbial fuel cells. Electrochemical perspective.

Miniaturized ceramic-based microbial fuel cell for efficient power generation from urine and stack development (2018)
Journal Article
Gajda, I., Stinchcombe, A., Merino-Jimenez, I., Pasternak, G., Sanchez-Herranz, D., Greenman, J., & Ieropoulos, I. (2018). Miniaturized ceramic-based microbial fuel cell for efficient power generation from urine and stack development. Frontiers in Energy Research, 6(OCT), https://doi.org/10.3389/fenrg.2018.00084

© 2018 Gajda, Stinchcombe, Merino-Jimenez, Pasternak, Sanchez-Herranz, Greenman and Ieropoulos. One of the challenges in Microbial Fuel Cell (MFC) technology is the improvement of the power output and the lowering of the cost required to scale up the... Read More about Miniaturized ceramic-based microbial fuel cell for efficient power generation from urine and stack development.

Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell (2018)
Journal Article
Walter, X. A., Greenman, J., & Ieropoulos, I. (2018). Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell. Bioelectrochemistry, 123, 119-124. https://doi.org/10.1016/j.bioelechem.2018.04.011

© 2018 The Authors The recently developed self-stratifying membraneless microbial fuel cell (SSM-MFC) has been shown as a promising concept for urine treatment. The first prototypes employed cathodes made of activated carbon (AC) and polytetrafluoroe... Read More about Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell.

Recent advancements in real-world microbial fuel cell applications (2018)
Journal Article
Gajda, I., Greenman, J., & Ieropoulos, I. (2018). Recent advancements in real-world microbial fuel cell applications. Current Opinion in Electrochemistry, 11, 78-83. https://doi.org/10.1016/j.coelec.2018.09.006

© 2018 Elsevier B.V. This short review focuses on the recent developments of the Microbial Fuel Cell (MFC) technology, its scale-up and implementation in real world applications. Microbial Fuel Cells produce (bio)energy from waste streams, which can... Read More about Recent advancements in real-world microbial fuel cell applications.

Small ceramic microbial fuel cell as a trigenerative system for electricity, organics degradation and urine filtration (2018)
Presentation / Conference
Gajda, I., Greenman, J., Santoro, C., Serov, A., Atanassov, P., & Ieropoulos, I. (2018, September). Small ceramic microbial fuel cell as a trigenerative system for electricity, organics degradation and urine filtration. Paper presented at AiMES 2018 : ECS and SMEQ Joint International Meeting, Cancun, Mexico

Bioelectrochemical systems are employing microbes as biocatalysts to convert waste into valuable resources. For example, a Microbial Fuel Cell (MFC) utilises chemical energy locked in human urine into direct electrical current and can be scaled-up to... Read More about Small ceramic microbial fuel cell as a trigenerative system for electricity, organics degradation and urine filtration.

Anode surface modification with activated carbon for improved power generation in urine fed Microbial Fuel Cells (2018)
Presentation / Conference
Gajda, I., You, J., Santoro, C., Greenman, J., & Ieropoulos, I. (2018, September). Anode surface modification with activated carbon for improved power generation in urine fed Microbial Fuel Cells. Poster presented at 69th Annual Meeting of the International Society of Electrochemistry, Bologna, Italy

Microbial Fuel Cells (MFCs) utilise organic feedstocks such as urine as fuel for direct electricity production, by employing anode respiring microbes that convert organic matter into electrons while treating waste. One possible approach to bring this... Read More about Anode surface modification with activated carbon for improved power generation in urine fed Microbial Fuel Cells.