Skip to main content

Research Repository

Advanced Search

Outputs (41)

The robotic socket: A robotic design and biomimetic application of an auto-adjusting prosthetic socket prototype for above-knee amputees (2023)
Conference Proceeding
Rose, M., Carnochan, O., Gamlin, R., Tomlinson, L., Jafari, A., & Etoundi, A. (2023). The robotic socket: A robotic design and biomimetic application of an auto-adjusting prosthetic socket prototype for above-knee amputees. In 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO). https://doi.org/10.1109/robio58561.2023.10354965

Comfort in prosthetic sockets remains a significant challenge for many amputees, particularly for above-knee amputees bearing substantial weight on their soft tissue [1], [2]. The predominant source of discomfort often originates from swelling of the... Read More about The robotic socket: A robotic design and biomimetic application of an auto-adjusting prosthetic socket prototype for above-knee amputees.

Investigation into the customization of a transfemoral prosthetic socket to minimize discomfort for residual limb (RL) volume change (2023)
Conference Proceeding
Hulke, M., Jafari, A., & Etoundi, A. C. (2023). Investigation into the customization of a transfemoral prosthetic socket to minimize discomfort for residual limb (RL) volume change. In 2023 International Conference on System Science and Engineering (ICSSE) (514-521). https://doi.org/10.1109/ICSSE58758.2023.10227215

It has been estimated that approximately 7000 people undergo limb amputation in the UK every year [1]. This issue is even more significant in the US, where over 150,000 people undergo lower limb extremity amputations, and this number is predicted to... Read More about Investigation into the customization of a transfemoral prosthetic socket to minimize discomfort for residual limb (RL) volume change.

A robotic test rig for performance assessment of prosthetic joints (2022)
Journal Article
Etoundi, A. C., Dobner, A., Agrawal, S., Semasinghe, C. L., Georgilas, I., & Jafari, A. (2022). A robotic test rig for performance assessment of prosthetic joints. Frontiers in Robotics and AI, 8, Article 613579. https://doi.org/10.3389/frobt.2021.613579

Movement within the human body is made possible by joints connecting two or more elements of the musculoskeletal system. Losing one or more of these connections can seriously limit mobility, which in turn can lead to depression and other mental issue... Read More about A robotic test rig for performance assessment of prosthetic joints.

Integration of computer vision in a testing facility for prosthetic joint inspection and performance assessment (2022)
Conference Proceeding
Glanville, S., Chong, J. J., Jafari, A., & Etoundi, A. (2022). Integration of computer vision in a testing facility for prosthetic joint inspection and performance assessment. In 2021 24th International Conference on Mechatronics Technology (ICMT)https://doi.org/10.1109/icmt53429.2021.9687237

This paper presents a computer vision system within a test facility for prosthetic joint inspection and performance by analysing range of motion data. Testing with individuals rather than using a testing facility can cause issues, such as irritation,... Read More about Integration of computer vision in a testing facility for prosthetic joint inspection and performance assessment.

Physiological data measurement in digital manufacturing (2022)
Conference Proceeding
Agrawal, S., Chong, J., Yacoub, A. A., Giuliani, M., Jafari, A., & Etoundi, A. (2022). Physiological data measurement in digital manufacturing. In 2021 24th International Conference on Mechatronics Technology (ICMT). https://doi.org/10.1109/ICMT53429.2021.9687200

As industry is moving towards a new digital rev-olution, identifying workers' mental and physical status is key to improved productivity in a digital manufacturing scenario. The main objective here is to provide an overview of sensing technologies in... Read More about Physiological data measurement in digital manufacturing.

Mimicking condylar knee to design bio-inspired robotic knee joint based on magnetic resonance imaging (2022)
Conference Proceeding
Hung, C. H., Etoundi, A., Jafari, A., Matthews, J., Chang, W. C., & Chong, J. J. (2022). Mimicking condylar knee to design bio-inspired robotic knee joint based on magnetic resonance imaging. In 2021 24th International Conference on Mechatronics Technology (ICMT)https://doi.org/10.1109/icmt53429.2021.9687202

The process of designing bio-inspired knee joint has been a challenging issue due to the complicated kinematics and dynamics of the human knee joint. This paper addresses this issue by presenting a design methodology that has been used to model the h... Read More about Mimicking condylar knee to design bio-inspired robotic knee joint based on magnetic resonance imaging.

Therapy Easy: A co-designed hand rehabilitation system using Leap motion controller (2022)
Conference Proceeding
Jena, A., Chong, J., Jafari, A., & Etoundi, A. (2022). Therapy Easy: A co-designed hand rehabilitation system using Leap motion controller. In 2021 24th International Conference on Mechatronics Technology (ICMT)https://doi.org/10.1109/icmt53429.2021.9687286

Disability affects over 1 billion people across the globe [1]. About 190 million people in this demographic aged 15 or older require healthcare services due to having significant difficulties in functioning [1]. Upper limb disability is one such issu... Read More about Therapy Easy: A co-designed hand rehabilitation system using Leap motion controller.

Virtual inertia as an energy dissipation element for haptic interfaces (2022)
Journal Article
Choi, H., Kim, N. G., Jafari, A., Singh, H., & Ryu, J. H. (2022). Virtual inertia as an energy dissipation element for haptic interfaces. IEEE Robotics and Automation Letters, 7(2), 2708-2715. https://doi.org/10.1109/LRA.2022.3144492

Adding virtual damping to dissipate energy has been a major tool for designing stable haptic interfaces in most passivity-based approaches. However, virtual damping is known to dissipate a limited amount of energy. It even generates energy during hig... Read More about Virtual inertia as an energy dissipation element for haptic interfaces.

Bio-inspired knee joint: Trends in the hardware systems development (2021)
Journal Article
Etoundi, A. C., Semasinghe, C. L., Agrawal, S., Dobner, A., & Jafari, A. (2021). Bio-inspired knee joint: Trends in the hardware systems development. Frontiers in Robotics and AI, 8, https://doi.org/10.3389/frobt.2021.613574

The knee joint is a complex structure that plays a significant role in the human lower limb for locomotion activities in daily living. However, we are still not quite there yet where we can replicate the functions of the knee bones and the attached l... Read More about Bio-inspired knee joint: Trends in the hardware systems development.

Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig (2020)
Conference Proceeding
Sabau, P., Chong, J. J., Jafari, A., Agrawal, S., Semasinghe, C., & Etoundi, A. (2020). Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig. https://doi.org/10.23919/iccas50221.2020.9268404

In the past century many medical advancements in prosthetics have been achieved, however, discomfort in prosthetic socket remains one of the toughest challenges faced by both amputees and prosthetists. Wearing an uncomfortable socket can lead to user... Read More about Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig.

A de-risked bio-inspired condylar prosthetic knee joint for a robotic leg test rig (2020)
Conference Proceeding
Agrawal, S., Simasinghe, C., Jafari, A., Etoundi, A., & Jie Chong, J. (in press). A de-risked bio-inspired condylar prosthetic knee joint for a robotic leg test rig

The design of the human knee joint has been a challenging task due to the presence of intricate parts, complex mechanisms and their interdependence which joins them together. A bio-inspired design for the condylar knee joint has been proposed in earl... Read More about A de-risked bio-inspired condylar prosthetic knee joint for a robotic leg test rig.

Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig (2020)
Conference Proceeding
Sabau, P., Jie Chong, J., Jafari, A., Agrawal, S., Semasinghe, C., & Etoundi, A. (in press). Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig

In the past century many medical advancements in prosthetics have been achieved, however, discomfort in prosthetic socket remains one of the toughest challenges faced by both amputees and prosthetists. Wearing an uncomfortable socket can lead to user... Read More about Application of machine learning towards design optimisation of bio-inspired transfemoral prosthetic socket for robotic leg test rig.

Multilateral teleoperation over communication time delay using the time-domain passivity approach (2019)
Journal Article
Ryu, J., Ha-Van, Q., & Jafari, A. (2020). Multilateral teleoperation over communication time delay using the time-domain passivity approach. IEEE Transactions on Control Systems Technology, 28(6), 2705 - 2712. https://doi.org/10.1109/TCST.2019.2948126

A general framework to stabilize multilateral teleoperation system over a communication time delay based on the well-known time-domain passivity approach (TDPA) is proposed. The uniqueness of this framework is that it is independent of the amount of... Read More about Multilateral teleoperation over communication time delay using the time-domain passivity approach.

Enhancing the rate-hardness of haptic interaction: Successive force augmentation approach (2019)
Journal Article
Singh, H., Janetzko, D., Jafari, A., Weber, B., Lee, C. I., & Ryu, J. H. (2020). Enhancing the rate-hardness of haptic interaction: Successive force augmentation approach. IEEE Transactions on Industrial Electronics, 67(1), 809-819. https://doi.org/10.1109/TIE.2019.2918500

© 1982-2012 IEEE. There have been numerous approaches that have been proposed to enlarge the impedance range of haptic interaction while maintaining stability. However, enhancing the rate-hardness of haptic interaction while maintaining stability is... Read More about Enhancing the rate-hardness of haptic interaction: Successive force augmentation approach.

Enhancing the force transparency of time domain passivity approach: Observer-based gradient controller (2019)
Presentation / Conference
Singh, H., Jafari, A., & Ryu, J. (2019, May). Enhancing the force transparency of time domain passivity approach: Observer-based gradient controller. Paper presented at The 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada

Passivity has been the most often used constraint for the stable controller design of bilateral teleoperation systems. Especially, Time Domain Passivity Approach (TDPA) has been used in many applications since it has been known as one of the least co... Read More about Enhancing the force transparency of time domain passivity approach: Observer-based gradient controller.

Enhancing the Command-Following Bandwidth for Transparent Bilateral Teleoperation (2018)
Journal Article
Singh, H., Jafari, A., Ryu, J. H., & Peer, A. (2018). Enhancing the Command-Following Bandwidth for Transparent Bilateral Teleoperation. Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems, 4972-4979. https://doi.org/10.1109/IROS.2018.8593866

© 2018 IEEE. Enhancing transparency of a teleoperation system by increasing the command-following bandwidth has not received lots of attention so far. This is considered a challenging task since in a teleoperation system the command-following bandwid... Read More about Enhancing the Command-Following Bandwidth for Transparent Bilateral Teleoperation.

Lyapunov observer/controller for stable haptic interaction (2018)
Conference Proceeding
Jafari, A., Singh, H., Karunanayaka, H., Ryu, J. H., Chong, J., & Etoundi, A. (2018). Lyapunov observer/controller for stable haptic interaction. . https://doi.org/10.1109/AIM.2018.8452311

© 2018 IEEE. Passivity has been the most common tool to achieve stability in haptic and teleoperation systems; however passivity-based approaches suffer from the conservativism of passivity criteria. Therefore, it is essential to have an approach whi... Read More about Lyapunov observer/controller for stable haptic interaction.

Modelling of a Bio-Inspired Knee Joint and Design of an Energy Saving Exoskeleton Based on Performance Maps Optimisation for Condylar Knee Prosthetics (2018)
Conference Proceeding
Etoundi, A., Chong, J., & Jafari, A. (2018). Modelling of a Bio-Inspired Knee Joint and Design of an Energy Saving Exoskeleton Based on Performance Maps Optimisation for Condylar Knee Prosthetics. . https://doi.org/10.1109/CoDIT.2018.8394776

© 2018 IEEE. The process of designing bio-inspired knee joint for prosthetics/exoskeletons has been a challenging issue due to the complicated relationships between the performance criteria and the link lengths of the design space, or workspace in th... Read More about Modelling of a Bio-Inspired Knee Joint and Design of an Energy Saving Exoskeleton Based on Performance Maps Optimisation for Condylar Knee Prosthetics.

Design of anatomy-based 3D patient-specific knee replacement implant model from medical imaging (2018)
Presentation / Conference
Chong, J., Matthews, J., Jafari, A., & Appolinaire, E. (2018, June). Design of anatomy-based 3D patient-specific knee replacement implant model from medical imaging. Paper presented at 2018 The 2nd International Conference on Mechanical, System and Control Engineering (ICMSC 2018), Moscow, Russia

This paper focuses on the design of an anatomy-based 3D patient-specific knee replacement implant model, which is derived from medical imaging. The investigation extracted the knee profiles from MRI scans to develop a 3D model of the knee, including... Read More about Design of anatomy-based 3D patient-specific knee replacement implant model from medical imaging.

A conceptual exoskeleton shoulder design for the assistance of upper limb movement (2018)
Journal Article
Perez, C. N., Georgilas, I., Etoundi, A., Chong, J., & Jafari, A. (2018). A conceptual exoskeleton shoulder design for the assistance of upper limb movement. Lecture Notes in Artificial Intelligence, 10965 LNAI, 291-302. https://doi.org/10.1007/978-3-319-96728-8_25

© Springer International Publishing AG, part of Springer Nature 2018. There is an increased interest on wearable technologies for rehabilitation and human augmentation. Systems focusing on the upper limbs are attempting to replicate the musculoskelet... Read More about A conceptual exoskeleton shoulder design for the assistance of upper limb movement.

Realizing low-impedance rendering in admittance-type haptic interfaces using the input-to-state stable approach (2017)
Journal Article
Nabeel, M., Jafari, A., & Ryu, J. H. (2017). Realizing low-impedance rendering in admittance-type haptic interfaces using the input-to-state stable approach. Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017-September, 914-919. https://doi.org/10.1109/IROS.2017.8202254

© 2017 IEEE. This paper proposes an approach to enlarge the impedance range of admittance-type haptic interfaces. Admittance-type haptic interfaces have advantages over impedance-type haptic interfaces in the interaction with high impedance virtual e... Read More about Realizing low-impedance rendering in admittance-type haptic interfaces using the input-to-state stable approach.

The Input-to-State Stable (ISS) approach for stabilizing haptic interaction with virtual environments (2017)
Journal Article
Jafari, A., Nabeel, M., & Ryu, J. H. (2017). The Input-to-State Stable (ISS) approach for stabilizing haptic interaction with virtual environments. IEEE Transactions on Robotics, 33(4), 948-963. https://doi.org/10.1109/TRO.2017.2676127

© 2004-2012 IEEE. Passivity has been a major criterion for designing a stable haptic interface due to its numerous advantages. However, passivity-based controllers have suffered from the design conservatism of the passivity criterion, particularly wh... Read More about The Input-to-State Stable (ISS) approach for stabilizing haptic interaction with virtual environments.

Multi degree-of-freedom successive stiffness increment approach for high stiffness haptic interaction (2016)
Presentation / Conference
Singh, H., Jafari, A., & Ryu, J. (2016, November). Multi degree-of-freedom successive stiffness increment approach for high stiffness haptic interaction. Paper presented at Asia Haptics, Kashiwanoha, Japan

In haptic interaction, stability and the object’s hardness perception are of great significance. Although numerous studies have been done for stable haptic interaction, however, most of them sacrifice the actual displayed stiffness as a cost of stabi... Read More about Multi degree-of-freedom successive stiffness increment approach for high stiffness haptic interaction.

Stable and transparent teleoperation over communication time-delay: Observer-based input-to-state stable approach (2016)
Journal Article
Jafari, A., Nabeel, M., Singh, H., & Ryu, J. (2016). Stable and transparent teleoperation over communication time-delay: Observer-based input-to-state stable approach. IEEE Haptics Symposium : [proceedings]. IEEE Haptics Symposium, 2016-April, 235-240. https://doi.org/10.1109/HAPTICS.2016.7463183

In this paper, an observer-based input-to-state stable approach is proposed to stabilize teleoperation systems over communication time-delay with better transparency compared with passivity approaches. In this paper, input-to-state stable approach is... Read More about Stable and transparent teleoperation over communication time-delay: Observer-based input-to-state stable approach.

Independent force and position control for cooperating manipulators handling an unknown object and interacting with an unknown environment (2016)
Journal Article
Ryu, J. H., Jafari, A., & Jee-Hwan, R. (2016). Independent force and position control for cooperating manipulators handling an unknown object and interacting with an unknown environment. Journal of The Franklin Institute, 353(4), 857-875. https://doi.org/10.1016/j.jfranklin.2015.12.010

© 2016 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. This paper presents a unified framework for system design and control in cooperative robotic systems. It introduces a highly generalized cooperative system configuration t... Read More about Independent force and position control for cooperating manipulators handling an unknown object and interacting with an unknown environment.

Increasing the impedance range of admittance-type haptic interfaces by using Time Domain Passivity Approach (2015)
Journal Article
Hwang, J. H., Nabeel, M., Lee, J., Mehmood, U., Jafari, A., & Ryu, J. H. (2015). Increasing the impedance range of admittance-type haptic interfaces by using Time Domain Passivity Approach. Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015-December, 585-590. https://doi.org/10.1109/IROS.2015.7353431

© 2015 IEEE. This paper proposes a method to increase the impedance range of admittance-type haptic interfaces. Admittance-type haptic interfaces are used in various applications that typically require interaction with high impedance virtual environm... Read More about Increasing the impedance range of admittance-type haptic interfaces by using Time Domain Passivity Approach.

Stable bilateral teleoperation with input-to-state stable approach (2015)
Conference Proceeding
Jafari, A., Nabeel, M., & Ryu, J. (2015). Stable bilateral teleoperation with input-to-state stable approach

Passivity has been the most often used constraint for the controller design of bilateral teleoperation systems. However passivity has been suffering from its own design conservatism since this is a sufficient condition for stability and representing... Read More about Stable bilateral teleoperation with input-to-state stable approach.

Network formulation and stability improvement of a bilateral teleoperation system with admittance-type master interfaces (2015)
Conference Proceeding
Nabeel, M., Jafari, A., & Ryu, J. H. (2015). Network formulation and stability improvement of a bilateral teleoperation system with admittance-type master interfaces. https://doi.org/10.1109/AIM.2015.7222796

© 2015 IEEE. This paper introduces a network formulation of bilateral teleoperation systems with admittance-type master interfaces to improve their stability range with Time Domain Passivity Approach (TDPA). Since traditional network representation o... Read More about Network formulation and stability improvement of a bilateral teleoperation system with admittance-type master interfaces.

Stable admittance type haptic interaction based on time domain passivity approach (2015)
Journal Article
Jafari, A., Totorkulov, K., & Ryu, J. (2015). Stable admittance type haptic interaction based on time domain passivity approach

In this paper, we propose a stable and high transparent admittance haptic display even in free space haptic rendering. Because considering admittance haptic rendering as a one-port network is not enough to detect the active energy, new representation... Read More about Stable admittance type haptic interaction based on time domain passivity approach.

Input-to-state stable approach to release the conservatism of passivity-based stable haptic interaction (2015)
Journal Article
Jafari, A., & Ryu, J. H. (2015). Input-to-state stable approach to release the conservatism of passivity-based stable haptic interaction. IEEE International Conference on Robotics and Automation, 2015-June(June), 285-290. https://doi.org/10.1109/ICRA.2015.7139013

© 2015 IEEE. Passivity has been a major criterion on designing a stable haptic interface due to many advantages. However, passivity has been suffering from its intrinsic conservatism since it only represents a small set of the whole stable region. Th... Read More about Input-to-state stable approach to release the conservatism of passivity-based stable haptic interaction.

6-DOF extension of memory-based passivation approach for stable haptic interaction (2014)
Journal Article
Jafari, A., & Ryu, J. H. (2015). 6-DOF extension of memory-based passivation approach for stable haptic interaction. Intelligent Service Robotics, 8(1), 23-34. https://doi.org/10.1007/s11370-014-0161-y

© 2014, Springer-Verlag Berlin Heidelberg. This paper extends previously proposed memory-based passivity approach (MBPA) to 6 degrees-of-freedom (DOF) haptic interactions. By introducing 6-DOF virtual proxy and virtual object, connected with haptic i... Read More about 6-DOF extension of memory-based passivation approach for stable haptic interaction.

Hybrid force-motion control of coordinated robots interacting with unknown environments (2014)
Journal Article
Jafari, A., & Ryu, J. H. (2014). Hybrid force-motion control of coordinated robots interacting with unknown environments. https://doi.org/10.1109/ICCAS.2014.6987966

© 2014 Institute of Control, Robotics and Systems (ICROS). This paper presents a unified framework for system design and control in cooperative robotic systems. It introduces a highly general cooperative system configuration involving any number of m... Read More about Hybrid force-motion control of coordinated robots interacting with unknown environments.

Sliding mode hybrid impedance control of robot manipulators interacting with unknown environments using VSMRC method (2013)
Presentation / Conference
Jafari, A., Ryu, J., Rezaei, M., Monfaredi, R., Talebi, A., & Shiry Ghidary, S. (2013, October). Sliding mode hybrid impedance control of robot manipulators interacting with unknown environments using VSMRC method. Paper presented at The 44th IEEE International Symposium on Robotics (ISR 2013), Seoul, Korea

In the present paper, the objective of hybrid impedance control is specified and a robust hybrid impedance control approach is proposed. Based on the concept of hybrid control, the task space is decomposed into position and force controlled subspaces... Read More about Sliding mode hybrid impedance control of robot manipulators interacting with unknown environments using VSMRC method.

Transparency improved sliding-mode control design for bilateral teleoperation systems by using virtual manipulator concept (2013)
Journal Article
Jafari, A., & Ryu, J. H. (2013). Transparency improved sliding-mode control design for bilateral teleoperation systems by using virtual manipulator concept. IFAC-PapersOnLine, 3(PART 1), 21-26. https://doi.org/10.3182/20131111-3-KR-2043.00013

This paper proposes a new methodology for designing sliding mode bilateral controllers based virtual manipulator concept that aims to reach the most transparency considering parameter uncertainties and disturbances. This method shows a modified schem... Read More about Transparency improved sliding-mode control design for bilateral teleoperation systems by using virtual manipulator concept.

Successive stiffness increment approach for high stiffness haptic interaction
Presentation / Conference
Singh, H., Jafari, A., & Ryu, J. Successive stiffness increment approach for high stiffness haptic interaction. Paper presented at IEEE Eurohaptics 2016 Conference

This paper proposes a method to further enlarge the displayed stiffness range of the impedance-type haptic interfaces. Numerous studies have been done for a stable haptic interaction in a wide impedance range. However, most of the approaches sacrific... Read More about Successive stiffness increment approach for high stiffness haptic interaction.

Increasing the rate-hardness of haptic interaction: Successive force augmentation approach
Conference Proceeding
Singh, H., Jafari, A., & Ryu, J. (2017). Increasing the rate-hardness of haptic interaction: Successive force augmentation approach

There have been numerous approaches that have been proposed to enlarge the impedance range, however it is still a challenging issue to increase the rate-hardness of haptic interaction while maintaining stability. The actual perceived rate-hardness ha... Read More about Increasing the rate-hardness of haptic interaction: Successive force augmentation approach.

Independent force and position control for cooperating manipulators handling an unknown object interacting with an unknown environment
Presentation / Conference
Jafari, A., & Ryu, J. Independent force and position control for cooperating manipulators handling an unknown object interacting with an unknown environment. Paper presented at 44th International Symposium on Robotics (ISR) 2013

In this paper, we consider two manipulators grasping a rigid object in contact with a deformable working surface, whose real physical parameters are unknown. Dynamics of the closed chain mechanism is expressed based on the objects center of mass, and... Read More about Independent force and position control for cooperating manipulators handling an unknown object interacting with an unknown environment.

An adaptive hybrid force/motion control design for robot manipulators interacting in constrained motion with unknown non-rigid environments
Presentation / Conference
Jafari, A., Ryu, J., Rezaei, M., Monfaredi, R., Talebi, A., & Ghidary, S. An adaptive hybrid force/motion control design for robot manipulators interacting in constrained motion with unknown non-rigid environments. Paper presented at IEEE ISR 2013

In the present paper, the objective of hybrid control is specified and an adaptive hybrid force/motion control approach is proposed. Based on the concept of hybrid control, the task space is decomposed into position and force controlled subspaces. An... Read More about An adaptive hybrid force/motion control design for robot manipulators interacting in constrained motion with unknown non-rigid environments.

Multi degree-of-freedom input-to- state stable approach for stable haptic interaction
Presentation / Conference
Jafari, A., Nabeel, M., & Ryu, J. Multi degree-of-freedom input-to- state stable approach for stable haptic interaction. Paper presented at IEEE World Haptics Conference (WHC 2015), Chicago

Passivity has been the most often used constraint for the controller design of haptic interfaces. However, the designed controller based on passivity constraint has been suffering from its conservatism, especially when the user wants to increase the... Read More about Multi degree-of-freedom input-to- state stable approach for stable haptic interaction.

Input-to-State Stable Approach for Haptic Interface and Teleoperation Systems
Thesis
Jafari, A. (2014). Input-to-State Stable Approach for Haptic Interface and Teleoperation Systems. (Thesis). Korea University of Technology and Education (KoreaTech). Retrieved from https://uwe-repository.worktribe.com/output/806337

Passivity has been a major criterion on designing a stable haptic interface due to many advantages. However, passivity has been suffering from its intrinsic conservatism since it only represents a small set of the whole stable region. Therefore, ther... Read More about Input-to-State Stable Approach for Haptic Interface and Teleoperation Systems.