Skip to main content

Research Repository

Advanced Search

Laser enhanced dyeing of wool for textile design

Morgan, Laura; Tyrer, John; Kane, Faith; Shen, Jinsong

Laser enhanced dyeing of wool for textile design Thumbnail


Authors

Dr Laura Morgan Laura9.Morgan@uwe.ac.uk
Wallscourt Fellow in Design and Material Futures

John Tyrer

Faith Kane

Jinsong Shen



Abstract

A laser assisted dyeing technique for wool based textiles, allowing surface pattering of the textile substrate, is presented in this paper. Laser technology can offer digital design capabilities combined with the ability for bespoke or short run production. This dry technology, if used as an alternative to traditional textile wet processing, has the potential to offer increased environmental sustainability through significant reduction in energy and wastewater effluent. This study examined the effect of CO2 laser irradiation as a pre-treatment to dyeing 100% wool fabric with reactive dye and it’s potential as a creative tool for textile design. Using a 10.6µm, 60 Watt CO2 laser, optimum laser processing parameters for treating wool, were determined. Tests were then performed to analyse the effectiveness of the laser pre-treated and dyed fabric. Reflectance spectrophotometry, dye exhaustion and colour difference values were determined, revealing that laser treatment has an increasing effect on the colour difference value. Microscopic analysis of the laser treated/dyed fabric showed that CO2 laser irradiation could be used to remove the outer scales from individual wool fibres on the surface of a woollen textile. The removal of these scales allows dye to penetrate the fibre at an increased rate. Potential design applications of the technique have been explored. Investigations concluded that laser irradiating targeted areas on the woollen cloth followed by dyeing, could be used to achieve differential dyeing between irradiated and non-irradiated areas on the textile surface. After dyeing, the laser marked areas appeared tonally darker on the surface of the cloth. This tonal differentiation was then used to examine quality of line and mark making that can be achieved to impart successful tonal surface patterning on woollen textiles.

Presentation Conference Type Conference Paper (unpublished)
Conference Name Transitions: Re-thinking Textiles and Surfaces
Start Date Nov 26, 2014
End Date Nov 27, 2014
Deposit Date Oct 1, 2019
Publicly Available Date Oct 3, 2019
Keywords Textile design, Textile Coloration and Finishing, Surface Design, Laser materials processing, design for sustainability
Public URL https://uwe-repository.worktribe.com/output/3123634

Files








You might also like



Downloadable Citations