Panagiotis Mougkogiannis
Visible light: Shaping chemical intelligence in proteinoid–ZnO interfaces
Mougkogiannis, Panagiotis; Kheirabadi, Noushin Raeisi; Adamatzky, Andrew
Abstract
We study the emergence of chemical intelligence in proteinoid–ZnO nanocomposites through their interaction with visible light. When these novel materials are exposed to light, they display electrical spiking behaviour that is similar to the action potentials of neurons. We examine the influence of various light conditions, such as wavelength, intensity, and duration, on the photo-response of these nanocomposites. The results indicate that higher light intensity and longer duration are associated with increased frequency and amplitude of voltage spikes. Furthermore, blue light is more effective than red light in this regard. This light-dependent behaviour indicates a form of chemical intelligence, in which the material learns and responds to external stimuli. The results of our research emphasise the potential of proteinoid–ZnO nanocomposites to develop bio-inspired, light-sensitive systems, which can lead to advancements in areas such as photocatalysis, unconventional computing, and adaptive materials. This study enhances the understanding of chemical intelligence and how it is demonstrated in synthetic nanomaterials.
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 18, 2024 |
Online Publication Date | Oct 3, 2024 |
Publication Date | Oct 28, 2024 |
Deposit Date | Oct 3, 2024 |
Publicly Available Date | Oct 4, 2024 |
Journal | New Journal of Chemistry |
Print ISSN | 1144-0546 |
Electronic ISSN | 1369-9261 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 48 |
Issue | 40 |
Pages | 17650-17669 |
DOI | https://doi.org/10.1039/d4nj03803g |
Public URL | https://uwe-repository.worktribe.com/output/13264246 |
Files
Visible light: Shaping chemical intelligence in proteinoid–ZnO interfaces
(4.3 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
On effect of chloroform on electrical activity of proteinoids
(2024)
Journal Article
Memfractance of proteinoids
(2024)
Journal Article
Proto–neural networks from thermal proteins
(2024)
Journal Article
Proto-neurons from abiotic polypeptides
(2024)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search