Skip to main content

Research Repository

Advanced Search

Operator and parameter adaptation in genetic algorithms

Smith, Jim; Fogarty, T.C.

Operator and parameter adaptation in genetic algorithms Thumbnail


Authors

Profile image of Jim Smith

Jim Smith James.Smith@uwe.ac.uk
Professor in Interactive Artificial Intelligence

T.C. Fogarty



Abstract

Genetic Algorithms are a class of powerful, robust search techniques based on genetic inheritance and the Darwinian metaphor of “Natural Selection”. These algorithms maintain
a finite memory of individual points on the search landscape known as the “population”. Members of the population are usually represented as strings written over some fixed alphabet, each of which has a scalar value attached to it reflecting its quality or “fitness”. The
search may be seen as the iterative application of a number of operators, such as selection, recombination and mutation, to the population with the aim of producing progressively fitter individuals. These operators are usually static, that is to say that their mechanisms, parameters, and probability of application are fixed at the beginning and constant throughout the run of the
algorithm. However there is an increasing body of evidence that not only is there no single choice of operators which is optimal for all problems, but that in fact the optimal choice of operators for a given problem will be time-variant i.e. it will depend on such factors as the
degree of convergence of the population. Based on theoretical and practical approaches, a number of authors have proposed methods of adaptively controlling one or more of the operators, usually invoking some kind of “meta-learning” algorithm, in order to try and improve
the performance of the Genetic Algorithm as a function optimiser.

In this paper we describe the background to these approaches, and suggest a framework for their classification based on the learning strategy used to control them, and what facets of the algorithm are susceptible to adaptation. We then review a number of significant pieces of work within this context, and draw some conclusions about the relative merits of various
approaches and promising directions for future work.

Journal Article Type Article
Publication Date Jan 1, 1997
Deposit Date Aug 23, 2010
Publicly Available Date Apr 29, 2016
Journal Soft Computing
Print ISSN 1432-7643
Publisher Springer (part of Springer Nature)
Peer Reviewed Peer Reviewed
Volume 1
Issue 2
Pages 81-87
DOI https://doi.org/10.1007/s005000050009
Keywords genetic algorithms parameters, operators, adaptation, self-adaptive
Public URL https://uwe-repository.worktribe.com/output/1103864
Publisher URL http://dx.doi.org/10.1007/s005000050009
Additional Information Additional Information : The original publication is available at www.springerlink.com
Contract Date Apr 29, 2016

Files






You might also like



Downloadable Citations