Asad Zia
A comprehensive review of incorporating steel fibers of waste tires in cement composites and its applications
Zia, Asad; Pu, Zhang; Holly, Ivan; Umar, Tariq; Tariq, Muhammad Atiq Ur Rehman; Sufian, Muhammad
Authors
Zhang Pu
Ivan Holly
Dr. Tariq Umar Tariq.Umar@uwe.ac.uk
Senior Lecturer in Construction Project Management
Muhammad Atiq Ur Rehman Tariq
Muhammad Sufian
Contributors
Yuri Ribakov
Editor
Abstract
Accumulating vast amounts of pollutants drives modern civilization toward sustainable development. Construction waste is one of the prominent issues impeding progress toward net-zero. Pollutants must be utilized in constructing civil engineering structures for a green ecosystem. On the other hand, large-scale production of industrial steel fibers (ISFs) causes significant damage to the goal of a sustainable environment. Recycled steel fibers (RSFs) from waste tires have been suggested to replace ISFs. This research critically examines RSF’s application in the mechanical properties’ improvement of concrete and mortar. A statistical analysis of dimensional parameters of RSFs, their properties, and their use in manufacturing various cement-based composites are given. Furthermore, comparative assessments are carried out among the improvements in compressive, split tensile, and flexural strengths of plain and RSF-incorporated concrete and mortar. In addition, the optimum contents of RSF for each strength property are also discussed. The influence of RSFs parameters on various strength properties of concrete and mortars is discussed. The possible applications of RSF for various civil engineering structures are reviewed. The limitations and errors noticed in previous review papers are also outlined. It is found that the maximum enhancement in compressive strength (CS), split tensile strength (STS), and flexure strength (FS) are 78%, 149%, and 157%, respectively, with the addition of RSF into concrete. RSF increased cement mortars’ CS, STS, and FS by 46%, 50.6%, and 69%, respectively. The current study encourages the building sector to use RSFs for sustainable concrete.
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 14, 2022 |
Online Publication Date | Oct 22, 2022 |
Publication Date | Oct 22, 2022 |
Deposit Date | Nov 8, 2022 |
Publicly Available Date | Nov 9, 2022 |
Journal | Materials |
Print ISSN | 1996-1944 |
Electronic ISSN | 1996-1944 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 15 |
Issue | 21 |
Pages | 7420 |
Series Title | Carbon Peaking and Carbon Neutrality in the Cement-Based Materials |
DOI | https://doi.org/10.3390/ma15217420 |
Keywords | Review, sustainable environment, raw steel fibers recovered from waste tires, concrete, mortars, fiber reinforced concrete, mechanical strength |
Public URL | https://uwe-repository.worktribe.com/output/10121888 |
Publisher URL | https://www.mdpi.com/1996-1944/15/21/7420 |
Related Public URLs | https://www.mdpi.com/journal/materials/special_issues/Carbon_Cement_Materials |
Files
A comprehensive review of incorporating steel fibers of waste tires in cement composites and its applications
(8.4 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
The role of the built environment in addressing the global challenges
(2024)
Book Chapter
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search