Skip to main content

Research Repository

Advanced Search

Outputs (100)

Investigating a cascade of seven hydraulically connected microbial fuel cells (2012)
Journal Article
Winfield, J., Ieropoulos, I., & Greenman, J. (2012). Investigating a cascade of seven hydraulically connected microbial fuel cells. Bioresource Technology, 110, 245-250. https://doi.org/10.1016/j.biortech.2012.01.095

Seven miniature microbial fuel cells (MFCs) were hydraulically linked in sequence and operated in continuous-flow (cascade). Power output and treatment efficiency were investigated using varying organic loads, flow-rates and electrical configurations... Read More about Investigating a cascade of seven hydraulically connected microbial fuel cells.

Urine utilisation by microbial fuel cells; Energy fuel for the future (2012)
Journal Article
Ieropoulos, I., Greenman, J., & Melhuish, C. (2012). Urine utilisation by microbial fuel cells; Energy fuel for the future. Physical Chemistry Chemical Physics, 14(1), 94-98. https://doi.org/10.1039/c1cp23213d

This communication reports for the first time the direct utilisation of urine in MFCs for the production of electricity. Different conversion efficiencies were recorded, depending on the amount treated. Elements such as N, P, K can be locked into new... Read More about Urine utilisation by microbial fuel cells; Energy fuel for the future.

Microbial fuel cells for robotics: Energy autonomy through artificial symbiosis (2012)
Journal Article
Ieropoulos, I., Greenman, J., Melhuish, C., & Horsfield, I. (2012). Microbial fuel cells for robotics: Energy autonomy through artificial symbiosis. ChemSusChem, 5(6), 1020-1026. https://doi.org/10.1002/cssc.201200283

The development of the microbial fuel cell (MFC) technology has seen an enormous growth over the last hundred years since its inception by Potter in 1911. The technology has reached a level of maturity that it is now considered to be a field in its o... Read More about Microbial fuel cells for robotics: Energy autonomy through artificial symbiosis.

Urine as a suitable fuel for microbial fuel cells (2011)
Presentation / Conference Contribution
Ieropoulos, I. A., Greenman, J., & Melhuish, C. (2011). Urine as a suitable fuel for microbial fuel cells. In P. Lunghi, S. Ubertini, & V. Cigolotti (Eds.), Proceedings of EFC11. , (325-326)

MFCs show promise in utilising a wide variety of organic sources. This paper describes the utilisation of neat urine as the main feedstock, with conversion efficiencies of >50%. Power densities of 4.93mW/m2 were recorded when 48 small-scale MFCs were... Read More about Urine as a suitable fuel for microbial fuel cells.

Investigating the effects of fluidic connection between microbial fuel cells (2011)
Journal Article
Winfield, J., Ieropoulos, I., Greenman, J., & Dennis, J. (2011). Investigating the effects of fluidic connection between microbial fuel cells. Bioprocess and Biosystems Engineering, 34(4), 477-484. https://doi.org/10.1007/s00449-010-0491-x

Microbial fuel cells (MFCs) can 'treat' wastewater but individually are thermodynamically restricted. Scale-up might, therefore, require a plurality of units operating in a stack which could introduce losses simply through fluidic connections. Experi... Read More about Investigating the effects of fluidic connection between microbial fuel cells.

The overshoot phenomenon as a function of internal resistance in microbial fuel cells (2011)
Journal Article
Winfield, J., Ieropoulos, I., Greenman, J., & Dennis, J. (2011). The overshoot phenomenon as a function of internal resistance in microbial fuel cells. Bioelectrochemistry, 81(1), 22-27. https://doi.org/10.1016/j.bioelechem.2011.01.001

A method for assessing the performance of microbial fuel cells (MFCs) is the polarisation sweep where different external resistances are applied at set intervals (sample rates). The resulting power curves often exhibit an overshoot where both power a... Read More about The overshoot phenomenon as a function of internal resistance in microbial fuel cells.

Small scale microbial fuel cells and different ways of reporting output (2010)
Presentation / Conference Contribution
Ieropoulos, I., Winfield, J., Greenman, J., & Melhuish, C. (2010). Small scale microbial fuel cells and different ways of reporting output. ECS Transactions, 28(9), 1-9. https://doi.org/10.1149/1.3492221

The present study, reports on the findings of connecting 2 stacks of 48 MFCs and the importance of maturity and acclimation for the anodic biofilms. Furthermore, an attempt is made to emphasize the importance of a universal unit for quantifying power... Read More about Small scale microbial fuel cells and different ways of reporting output.

Grounding motivation in energy autonomy: A study of artificial metabolism constrained robot dynamics (2010)
Presentation / Conference Contribution
Lowe, R., Montebelli, A., Ieropoulos, I., Greenman, J., Melhuish, C., & Ziemke, T. (2010). Grounding motivation in energy autonomy: A study of artificial metabolism constrained robot dynamics. In H. Fellermann, M. Hanczyc, & M. Dorr (Eds.), Artificial Life XII: Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems. , (725-732)

We present an evolutionary robotics investigation into the metabolism constrained homeostatic dynamics of a simulated robot. Unlike existing research that has focused on either energy or motivation autonomy the robot described here is considered in t... Read More about Grounding motivation in energy autonomy: A study of artificial metabolism constrained robot dynamics.

Microbial fuel cell driven behavioral dynamics in robot simulations (2010)
Presentation / Conference Contribution
Montebelli, A., Lowe, R., Ieropoulos, I., Melhuish, C., Greenman, J., & Ziemke, T. (2010). Microbial fuel cell driven behavioral dynamics in robot simulations. In M. Hanczyc, M. Dorr, & H. Fellermann (Eds.), Artificial Life XII: Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems. , (749-756)

With the present study we report the first application of a recently proposed model for realistic microbial fuel cells (MFCs) energy generation dynamics, suitable for robotic simulations with minimal and extremely limited computational overhead. A si... Read More about Microbial fuel cell driven behavioral dynamics in robot simulations.

MFCs and algae (2010)
Presentation / Conference Contribution
Ieropoulos, I. A., Greenman, J., & Sauer, M. (2010). MFCs and algae. ECS Transactions, 28(9), 23-30. https://doi.org/10.1149/1.3492223

Algae and photosynthetic bacteria may be integrated or associated with Microbial Fuel Cells MFCs in a number of different ways including: (1) use of whole (intact) or lipid-extracted lyzed cells as the primary carbon-energy source for anodic microbia... Read More about MFCs and algae.