Fariba Goodarzian
Hybrid meta-heuristic algorithms for a supply chain network considering different carbon emission regulations using big data characteristics
Goodarzian, Fariba; Kumar, Vikas; Abraham, Ajith
Authors
Professor Vikas Kumar Vikas.Kumar@uwe.ac.uk
Professor in Operations and Supply Chain Management
Ajith Abraham
Abstract
Big data (BD) approach has significantly impacted on the development and expansion of supply chain network management and design. The available problems in the supply chain network (SCN) include production, distribution, transportation, ordering, and inventory holding problems. These problems under the BD environment are challenging and considerably affect the efficiency of the SCN. The drastic environmental and regulatory changes around the world and the rising concerns about carbon emissions have increased the awareness of customers regarding the carbon footprint of the products they are consuming. This has enforced supply chain managers to change strategies to reframe carbon emissions. The decisions such as an optimization of the suitable network of the proper lot sizes can play a crucial role in minimizing the whole carbon emissions in the SCN. In this paper, a new integrated production–transportation–ordering–inventory holding problem for SCN is developed. In this regard, a mixed-integer nonlinear programming (MINLP) model in the multi-product, multi-level, and multi-period SCN is formulated based on the minimization of the total costs and the related cost of carbon emissions. The research also uses a chance-constrained programming approach. The proposed model needs a range of real-time parameters from capacities, carbon caps, and costs. These parameters along with the various sizes of BD, namely velocity, variety, and volume, have been illustrated. A lot-sizing policy along with carbon emissions is also provided in the proposed model. One of the important contributions of this paper is the three various carbon regulation policies that include carbon capacity-and-trade, the strict capacity on emission, and the carbon tax on emissions in order to assess the carbon emissions. As there is no benchmark available in the literature, this study contributes toward this aspect by proposing two hybrid novel meta-heuristics (H-1) and (H-2) to optimize the large-scale problems with the complex structure containing BD. Hence, a generated random dataset possessing the necessary parameters of BD, namely velocity, variety, and volume, is provided to validate and solve the suggested model. The parameters of the proposed algorithms are calibrated and controlled using the Taguchi approach. In order to evaluate hybrid algorithms and find optimal solutions, the study uses 15 randomly generated data examples having necessary features of BD and T test significance. Finally, the effectiveness and performance of the presented model are analyzed by a set of sensitivity analyses. The outcome of our study shows that H-2 is of higher efficiency.
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 24, 2021 |
Online Publication Date | Apr 1, 2021 |
Publication Date | 2021-06 |
Deposit Date | Mar 1, 2021 |
Publicly Available Date | Apr 2, 2022 |
Journal | Soft Computing |
Print ISSN | 1432-7643 |
Electronic ISSN | 1433-7479 |
Publisher | Springer (part of Springer Nature) |
Peer Reviewed | Peer Reviewed |
Volume | 25 |
Pages | 7527–7557 |
DOI | https://doi.org/10.1007/s00500-021-05711-7 |
Public URL | https://uwe-repository.worktribe.com/output/7156626 |
Files
Hybrid meta-heuristic algorithms for a supply chain network considering different carbon emission regulations using Big Data characteristics
(1.7 Mb)
PDF
Licence
http://www.rioxx.net/licenses/all-rights-reserved
Publisher Licence URL
http://www.rioxx.net/licenses/all-rights-reserved
Copyright Statement
This is a post-peer-review, pre-copyedit version of an article published in Soft Computing. The final authenticated version is available online at:
https://doi.org/10.1007/s00500-021-05711-7
Hybrid meta-heuristic algorithms for a supply chain network considering different carbon emission regulations using Big Data characteristics
(569 Kb)
Document
Licence
http://www.rioxx.net/licenses/all-rights-reserved
Publisher Licence URL
http://www.rioxx.net/licenses/all-rights-reserved
Copyright Statement
This is a post-peer-review, pre-copyedit version of an article published in Soft Computing. The final authenticated version is available online at: https://doi.org/10.1007/s00500-021-05711-7
You might also like
The role of the state for managing voluntary food sustainability standards democratically
(2023)
Journal Article
Guest editorial: Modelling the business and societal decisions under the impact of COVID-19
(2023)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search