Michail Tsompanas Antisthenis.Tsompanas@uwe.ac.uk
Lecturer in Computer Science
Evolutionary algorithms designing nanoparticle cancer treatments with multiple particle types
Tsompanas, Michail Antisthenis; Bull, Larry; Adamatzky, Andrew; Balaz, Igor
Authors
Lawrence Bull Larry.Bull@uwe.ac.uk
School Director (Research & Enterprise) and Professor
Andrew Adamatzky Andrew.Adamatzky@uwe.ac.uk
Professor
Igor Balaz
Abstract
There is a rich history of evolutionary algorithms tackling optimization problems where the most appropriate size of solutions, namely the genome length, is unclear a priori. Here, we investigated the applicability of this methodology on the problem of designing a nanoparticle (NP) based drug delivery system targeting cancer tumors. Utilizing a treatment comprised of multiple types of NPs is expected to be more effective due to the higher complexity of the treatment. This paper begins by using the well-known NK model to explore the effects of fitness landscape ruggedness on the evolution of genome length and, hence, solution complexity. The size of novel sequences and variations of the methodology with and without sequence deletion are also considered. Results show that whilst landscape ruggedness can alter the dynamics of the process, it does not hinder the evolution of genome length. On the contrary, the expansion of genome lengths can be encouraged by the topology of such landscapes. These findings are then explored within the aforementioned real-world problem. Variable sized treatments with multiple NP types are studied via an agent-based open source physics-based cell simulator. We demonstrate that the simultaneous evolution of multiple types of NPs leads to more than 50% reduction in tumor size. In contrast, evolution of a single NP type leads to only 7% reduction in tumor size. We also demonstrate that the initial stages of evolution are characterized by a fast increase in solution complexity (addition of new NP types), while later phases are characterized by a slower optimization of the best NP composition. Finally, the smaller the number of NP types added per mutation step, the shorter the length of the typical solution found.
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 6, 2021 |
Online Publication Date | Oct 14, 2021 |
Publication Date | 2021-11 |
Deposit Date | Jul 29, 2021 |
Publicly Available Date | Nov 15, 2021 |
Journal | IEEE Computational Intelligence Magazine |
Print ISSN | 1556-603X |
Electronic ISSN | 1556-6048 |
Publisher | Institute of Electrical and Electronics Engineers |
Peer Reviewed | Peer Reviewed |
Volume | 16 |
Issue | 4 |
Pages | 85-99 |
DOI | https://doi.org/10.1109/MCI.2021.3108306 |
Keywords | Index Terms-cancer simulator; nanoparticles; NK Model; PhysiCell; variable-length genome |
Public URL | https://uwe-repository.worktribe.com/output/7578957 |
Files
Evolutionary algorithms designing nanoparticle cancer treatments with multiple particle types
(536 Kb)
PDF
Licence
http://www.rioxx.net/licenses/all-rights-reserved
Publisher Licence URL
http://www.rioxx.net/licenses/all-rights-reserved
Copyright Statement
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
You might also like
Towards the evolution of vertical-axis wind turbines using supershapes
(2014)
Journal Article
Evolving unipolar memristor spiking neural networks
(2015)
Journal Article
A brief history of learning classifier systems: from CS-1 to XCS and its variants
(2015)
Journal Article
Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system
(2013)
Journal Article
Evolving spiking networks with variable resistive memories
(2014)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search