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There is a rich history of evolutionary algorithms tackling optimization problems where the most appropriate size of solutions,
namely the genome length, is unclear a priori. Here, we investigated the applicability of this methodology on the problem of designing
a nanoparticle (NP) based drug delivery system targeting cancer tumours. Utilizing a treatment comprised of multiple types of NPs
is expected to be more effective due to the higher complexity of the treatment. This paper begins by using the well-known NK
model to explore the effects of fitness landscape ruggedness on the evolution of genome length and, hence, solution complexity. The
size of novel sequences and variations of the methodology with and without sequence deletion are also considered. Results show
that whilst landscape ruggedness can alter the dynamics of the process, it does not hinder the evolution of genome length. On the
contrary, the expansion of genome lengths can be encouraged by the topology of such landscapes. These findings are then explored
within the aforementioned real-world problem. Variable sized treatments with multiple NP types are studied via an agent-based
open source physics-based cell simulator. We demonstrate that the simultaneous evolution of multiple types of NPs leads to more
than 50% reduction in tumour size. In contrast, evolution of a single NP type leads to only 7% reduction in tumour size. We also
demonstrate that the initial stages of evolution are characterized by a fast increase in solution complexity (addition of new NP
types), while later phases are characterized by a slower optimization of the best NP composition. Finally, the smaller the number
of NP types added per mutation step, the shorter the length of the typical solution found.

Index Terms—cancer simulator, nanoparticles, NK Model, PhysiCell, variable-length genome

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) can be applied to
problems of unknown complexity through the use of

variable-length genomes. Here the term genome refers to the
set of variables for the given optimization problem. A seminal
example of the variable-length genome methodology is the
work by Fogel et al. [1] on finite state machine design through
the use of a mutation-based scheme that can increase or
decrease the number of nodes. A subset of variable-length
problems, known as metameric representation problems [2],
is tackled by utilizing a segmented variable-length genome.
This means that the solutions are defined as sets of similar
components. Examples of these problems include the layout of
wind farms, wireless sensor networks, and composite laminate
stacking problems [3]. For example, the optimization of the
placement of wind turbines on a predefined site with a specific
wind profile can enhance the overall efficiency of the wind
farm by limiting the turbine interactions [4], [5]. Since there
is no given number of turbines in the problem, a variable-
length representation can be utilized. Similarly, in coverage
problems, such as the planning of cellular systems [6] or
of wireless sensor networks [7], [8], the placement of an
unknown number of nodes to achieve the coverage of a
sector is required. Despite the fact that the amount of nodes
is not predefined, the optimization process has to take into
account minimizing costs whilst maximizing the reliability
and coverage of the instalment. Variable-length algorithms
proved to be more efficient than the fixed-length ones in some
cases, even when the optimal amount of components of the
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solution was known [2]. Other examples of variable-length
representations include aspects within the field of electrical
circuit design, such as designing passive filters [9], transistor
amplifiers [10] and computing circuits [11], and the field
of neuroevolution [12]–[15], where artificial neural network
weights and topology are often optimized concurrently (after
[16]).

This paper first expands on previous variable-length studies
by investigating how the ruggedness of a fitness landscape
influences genome length during evolution, with an abstract
tunable model and a purely mutation-based approach. Here
the term fitness refers to the value of the objective function in
the given optimization problem. The insights gained are then
applied within the bio-engineering domain. In particular, we
simulate a nanoparticle (NP) based cancer treatment, where
multiple different types of NPs can be included. Given the
high computational cost of running the cancer simulator,
the conclusions drawn from the abstract model are used as
guidelines to economize computational resources.

There are various procedures in nature that can produce
novel DNA sequences and hence vary genome lengths, such as
horizontal gene transfers, recombination events, whole genome
duplications, retrotransposons, and others. A novel sequence
can have no immediate function and thus can be subject to
genetic drift or can be under positive or negative selective
pressure, due to beneficial or detrimental effects of mutation
[17], gene dosage effects [18], the subsequent specialisation
of a duplicated function [19], etc. In this paper, following [1],
a simple procedure to vary genome length is implemented,
where the length of an existing genome is increased with a
chosen number of random genes. By doing so, the fitness of
the altered individual will be instantly modified as random
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contributions are included. To study these phenomena, a well-
known abstract NK model [20] is utilized. The NK model
allows dynamic alterations in the size of fitness landscapes
of specified ruggedness. Our results suggest that landscape
ruggedness, the length of the new sequence added, and the
presence of gene deletion can all affect the evolution of
genome length.

We used these findings to inform investigations of optimiz-
ing the design of a simulated, NP-based, targeted drug delivery
system for cancer treatment. This simulation is based on Physi-
Cell [21], an open source physics-based cell simulator, which
extends BioFVM [22], a large-scale transport solver. It should
be noted that, given the high complexity of the simulator and
its long execution times, the evolutionary optimization should
ideally be kept under a computational budget. PhysiCell source
code was altered to simulate the injection of multiple types of
NPs with different behaviours within the same treatment. Since
the appropriate NP properties for a given type of tumour are
unknown, optimization can be applied as a search through a
space of variable size. Therefore, to optimize both the number
of types of NPs and their different features, we use a variable-
length evolutionary algorithm.

The optimization problem of designing robust anti-cancer
treatments can be expressed as:

minimize
X

f(X) where X = [x(1,1), x(2,1), ...,

x(4,j), x(5,j)], j = [1, ..., 10]

subject to 0 ≤ x(1,j) ≤ 1, j = [1, ..., 10]

0 ≤ x(2,j) ≤ 1, j = [1, ..., 10]

0 ≤ x(3,j) ≤ 10, j = [1, ..., 10]

0 ≤ x(4,j) ≤ 10, j = [1, ..., 10]

0 ≤ x(5,j) ≤ 10, j = [1, ..., 10]

where f is the objective function or fitness function that is
defined as the size of the tumour after the application of
a treatment (i.e., the number of simulated cancer cells at
the end of a PhysiCell run) and needs to be minimized. X
represents the design variable vector (i.e., the genome) which
is composed of sets of five variables for each type of NPs
in the solution. Note that variable j in the above equation is
the amount of different types of NPs used simultaneously in
a treatment and can take values from 1 to 10, so the genome
has variable length. Moreover, the bounds are presented for
the following variables: the attached worker migration bias
(x(1,j)), unattached worker migration bias (x(2,j)), worker
relative adhesion (x(3,j)), worker relative repulsion (x(4,j)),
worker motility persistence time (min) (x(5,j)). For further
details of the simulation refer to Section IV and for the
parameters of the implemented standard steady-state EA refer
to Section V.

Our findings indicate that more complex treatments (i.e.,
with more than one NP type) are more effective than those
with a single NP type. Significantly, the evolved treatment
complexity does not reach the maximum available complexity.
Therefore, bloat phenomena, although present to a certain ex-
tent, are not prevailing in this application. Following findings
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0                   1                  2

Fitness = 1/N f(n)

Fitness = (0.23+0.38+0.53)/3 = 0.38

N=3 K=1 

Fig. 1. An example NK model with parameters N = 3 and K = 1,
where arrows indicate each arbitrarily chosen dependent gene (left). The table
with 2(K+1) rows containing the fitness contributions of each gene is shown
(right), along with the fitness calculation for the example genome.

in the NK model, the average treatment complexity varies
slightly with the increase in solution length size. The smaller
the number of NP types added per mutation step, the shorter
the length of the typical solution found. Since there is no
significant difference in the final fitnesses of the scenarios
explored, for practical reasons (i.e., ease of manufacturing,
the problem of interactions between drugs and lower toxicity),
the solutions of smaller complexity can be considered as
preferable in vivo.

The paper is arranged as follows: the next two sections
present the NK model and the behaviour of a simple NK
mutation-based approach to variable-length optimization. The
following two sections introduce the bio-engineering problem
and the results of the optimization methodology applied to it,
respectively. In the final section conclusions are drawn.

II. THE NK MODEL

The NK model was introduced to investigate the charac-
teristics of rugged fitness landscapes [20]. The basic model
contains two parameters: N , the length of the binary genome;
and K, the number of genes in a genome —the position
of which are typically chosen at random— that influence
the fitness contribution of each gene. Increasing K increases
the ruggedness of the landscape, leading to an increase in
the number of local optima and a decrease in their typical
height [23]. Since the model assumes a high complexity of
the gene interdependence effect, the only appropriate tactic
is to assign random values to their contribution to fitness. As
depicted in the example (Fig. 1), a table is defined with 2(K+1)

fitness values randomly chosen between 0 and 1, where there
is one fitness for each combination of traits and the fitness
contribution of each gene is found in the table. The total fitness
of the genome is a sum of all separate fitness values of each
gene, normalized by N .

To examine the evolutionary dynamics and properties of the
NK model, we use a mutation-based hill-climbing algorithm
(in accordance with [23]). There, the single point in the
fitness space represents a converged species, i.e., the size of
the population is one and it evolves by randomly changing
one randomly chosen gene per generation. If the fitness of
the mutated “population” increases, it keeps the new genetic
configuration. If the fitness is equal, the selection is made at
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Fig. 2. (a, c) Average fitness values at 20000 generation steps for different K and N values (maximum and minimum values are indicated by vertical bars).
(b, d) Example average fitness values through the initial steps of evolution.

random. All results presented in this paper, acquired with the
NK model, are averaged over 10 runs (random start points)
on each of 10 randomly produced NK functions for every one
combination of the given parameters (N and K), i.e., 100
runs, for 20,000 generations. Here six values are chosen from
0 ≤ K ≤ 15, for N=20 and N=100.

Some results of running the standard NK model with dif-
ferent parameters to demonstrate the characteristic behaviour
of evolution depending upon the ruggedness of the fitness
landscape are presented in Fig. 2. When K = 0 all gene
fitness contributions are independent and randomly chosen
within a range of [0,1]. As a result, based on order statistics,
the average fitness is equal to 0.66. For small values of K (up
to K = 8), regardless of N , the ruggedness of the landscape
increases, as does the height of the better optima found. For
values of K higher than 8, the increasing entanglement of gene
dependencies that define their fitness contributions causes an
increasing number of low fitness local optima. Note that for
high K values relative to N , the central limit theorem indicates
that optima will average around 0.5. The decrease in the finally
found fitness when K tends towards N is an incident known
as the “complexity catastrophe”. The fittest individuals found
for tests with K > 6 and N = 20 (as depicted in Fig. 2)
are statistically significantly lower from those with N = 100,
when tested under T-test (p < 0.05).

III. GENOME GROWTH IN THE NK MODEL

In order to investigate the behaviour of variable-length
genomes throughout evolution under the abstract NK model,
the mutation operator is extended. In addition to varying
an arbitrarily picked gene, the operator can now also add a
random number (G) of new arbitrarily generated genes to the
rightmost part of the available genome (N ′ = N + G) (for
more details refer to the Supplementary Material). Since it
is generally assumed that this new functionality assigns new
dependencies on the fitness contributions, the first connection
of a randomly determined gene of the pre-existing ones is
assigned to the newly added ones (for K ≥ 1). In addition,
the newly added genes obtain K dependencies throughout
the entire genome for their fitness contribution. Thus, the
extension to the genome has a two-way influence on the fitness
of an individual.

As an initial trial, we investigate the case of G = 1, shown
in Fig. 3. In the same fashion as before, the parameter N
is set to two values, N = 20 and N = 100. In the first
case, with the initial parameter N = 20 and for values of
K > 10, the resulting fitness (Fig. 3(a)) is enhanced compared
with the static genome length (Fig. 2), with the difference
statistically significant (T-test, p < 0.05). Here, the genome
length increases by approximately three genes (or up to N ′ =
23 as depicted in Fig. 3(b)). As a result, the occurrence of the
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Fig. 3. (a, c) Average fitness values at 20000 generation steps for different K and N values (maximum and minimum values are indicated by vertical bars).
(b, d) Average genome length values (maximum and minimum values are indicated by vertical bars) for increasing functionality by one gene (G = 1).

0 5 10 15

K

0

100

200

300

400

500

600

G
en

er
at

io
n

N=20

Length G=1
Fitness G=0
Fitness G=1

(a)

0 5 10 15

K

0

500

1000

1500

2000

2500

3000

3500

4000

G
en

er
at

io
n

N=100

Length G=1
Fitness G=0
Fitness G=1

(b)

Fig. 4. Average time when the fittest individual is discovered and when the corresponding genome length is reached for combinations of N and K, and the
case of G = 1

complexity catastrophe is no longer evident, at least for the K
values explored. The final achieved genome lengths depicted
in Fig. 3(b) outline a high discrepancy between maximum and
minimum values; however, for lower values of K (i.e., K <
4), the final genome lengths are marginally smaller. Whereas,
in all cases with N = 100, the final fitness (Fig. 3(c)) is
not statistically significantly different (T-test, p ≥ 0.05) from
the standard case without genome growth. Nonetheless, the

amount of added genes (Fig. 3(d)) is substantial, even double
the amount that is observed with N = 20 (Fig. 3(b)) and
K > 4.

As the ruggedness of the fitness landscape increases, the
number of local optima increases and their typical height
decreases. Hence, the increase of ruggedness provides a larger
window for arbitrarily generated and added genes to make a
positive fitness contribution. On the contrary, on landscapes
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with lower ruggedness, high fitness optima can be expected
to be located during the early stages of the search, reducing
the window of opportunity for added genes to make a positive
fitness contribution. This is depicted in Fig. 4, which shows
the generations (y-axis) needed for the search methodology to
converge to a peak for different K parameters, with G = 0
(no genome growth) and G = 1 (genome growth with one
gene per step). The generation at which the genome growth
stops is also indicated. It can be observed that for every K
studied, the evolutionary search continues for a longer period
when growth is included. This is expected due to the increase
in the dimensions of the fitness landscape. It is also clear that
genome growth ceases earlier for low K. Figure 5 illustrates
the generation at which the additions of the first three genes
to the genome are initially successful. It can be seen that the
first two genes are accepted at roughly the same rate for all K
and N values, whereas the acceptance of the third gene varies
widely for N=20.

The effects of increasing the number of randomly added
genes per growth event are also explored. Figure 6 shows
results for G=20, where with N = 20 and K > 4, the final
fitness is significantly enhanced compared to G = 1 (T-test,
p < 0.05). This is attributed to the fact that the complexity
catastrophe is more robustly avoided, as the final genome
lengths are notably greater than with G = 1. In the case
of N = 100, the final fitness achieved is not significantly
different from the results with G = 1, but the final lengths are
also greater.

The generations when the final fitnesses are reached and
the corresponding genome lengths are illustrated in Fig. 7.
It can be seen that for all K, the evolution continues for a
longer period in comparison to no or limited genome growth,
particularly with N = 20 (as in Fig. 4). The generation
numbers when new genes are acquired by the genome are
shown in Fig. 8. The addition of the first sets of genes occurs
in comparable time steps as for the case of G = 1. While
the second sets are also added in similar generation numbers
for N = 100, they take longer or are not even added for
N = 20. Consequently, adding longer gene intervals may
result in more additions performed later during the evolution.
That is, a larger amount of growth per addition can maintain
the conditions longer for more subsequent growth. Here each
increase in the size of a fitness landscape supplies a number of
sub-optimal gene values, thereby maintaining an overall low
fitness level, which in turn may aid the acceptance of a new
random sequence.

In [24] the NK model was used to show that the evolutionary
optimization is more robust when additions to a genome are
smaller (for N = 16 and K = 2). This effect happens because
the gradual increase of dimensionality leads to continuous
fitness landscape changes, without abrupt shifts. That is, a
point in the landscape where the fitness is high under smaller
dimensions should lead to an appropriate new, higher fitness
score when dimensions increase. A similar idea was outlined
in [20] under the static genome sizes of the standard NK model
when altering the size of mutation steps. When the mutation
operator can generate genomes greater than the correlation
length in the fitness landscape, the period needed to reach an

optima increases considerably.

In our work, the results demonstrate that the first instance
of the lengthy gene additions is achieved within the range of
K values studied, namely without limitations based on the
correlation of the fitness landscape. However, as depicted in
Fig. 8, for N = 20 a second addition instance is not acquired
for 4 < K < 10 and a possible third one does not typically
happen for all K values. This is in contrast to the case with
small addition intervals (G = 1) as depicted in Fig. 5. This
could be caused by the level of correlation between the two
landscapes, despite the fact that additions are successful for
low values of K.

In nature, the most frequent end result of new gene ad-
ditions is their dismissal. This may happen through different
mechanisms such as fractionation following duplication of the
genome or via mutations. We implement the possibility of gene
deletion by updating the aforementioned mutation operator.
An individual can undergo mutation by altering a gene allele
in its existing genome or by altering the length of its existing
genome, both with the same likelihood. When length alteration
is randomly selected, the length can be increased or decreased
with a 50-50 chance, by G genes. That is, there is a 0.5
probability of gene allele alternation, a 0.25 probability of
length increase by G and a 0.25 probability of length decrease
by G (for the pseudo-code refer to Supplementary Material).
After running appropriate tests as before, the fitness is not
significantly altered for any combination of K and N param-
eters, so the results are not depicted here. On the contrary, as
illustrated in Fig. 9 for G = 1 the final lengths of the genome
observed are slightly shorter than in previous cases, especially
for K > 0. Similar results are observed for G = 20 (not
shown).

Further investigation of the final genome length achieved
with respect to the reduction and increase functions relative
probabilities is performed. The results are provided in Fig.
10. The case for G = 1 is investigated with probabilities
of the genome reduction function in the range of 0 to 0.5
(and the increase with complementary probabilities). It can
be concluded that as the probability of reduction increases,
the final genome length decreases at an almost steady rate.
However, the decrease of the final genome length is not that
significant, i.e., for N = 20 it is roughly one gene, whereas
for N = 100 it is two genes for each case of K.

The findings described in this section are now used to
inform explorations of novel types of NP-based cancer treat-
ment, where the number of NP types is not pre-determined. As
there is no trivial way of accurately determining the rugged-
ness of the real problem fitness landscape (the corresponding
N and K combination of the NK model), the increasing
interval of genome length will be studied for more gradual
genome growth (as with the case of G = 1). This is due to
the fact that G = 1 case provides a good starting point to study
the observation made earlier; as G increases, the resultant new
fitness landscape bears less analogies to the previous fitness
landscape.
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Fig. 5. Average waiting time in generation steps for each interval increase for combinations of N and K, and the case of G = 1. Note that for N = 20 and
K = 2 the third gene addition averages at 179, while it was not added for K = 0 and both N values.
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Fig. 6. (a, c) Average fitness values at 20000 generation steps for different K and N values (maximum and minimum values are indicated by vertical bars).
(b, d) Average genome length values (maximum and minimum values are indicated by vertical bars) for increasing functionality by twenty genes (G = 20).

IV. PHYSICELL

The high computational capacity of modern systems enables
the incorporation of detailed mathematical models in the study
of biological processes, along with laboratory experiments.
More specifically, the study of cancer biology is the epicenter
of many mathematical models [25], [26] that aim to be
powerful tools in the hands of scientists. One of these models

is PhysiCell [21], which is an agent-based, multicellular,
open source simulator emulating physics and biological rules
in interactions between cells. Moreover, PhysiCell utilizes
BioFVM [22] to emulate the secretion, diffusion and uptake
of chemical substances in the simulated area.

Employing PhysiCell as a target simulator for optimiza-
tion was previously proposed in problems of designing NP-
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Fig. 7. Average time when the fittest individual is discovered and when the corresponding genome length is reached for combinations of N and K, and the
case of G = 20
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Fig. 8. Average waiting time in generation steps for each interval increase for combinations of N and K, and the case of G = 20.
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Fig. 9. Average genome length values (maximum and minimum values are indicated by vertical bars) for increasing and decreasing functionality by one gene
(G = 1).

based drug delivery systems [27]–[30] or unveiling cancer
immunotherapies [31]. The design of NPs was investigated
through surrogate-assisted [27], haploid-diploid [28], differ-
ential evolution [29] and novelty search [30] evolutionary
algorithms, while the most effective immunotherapy for can-
cer tumours was examined through a combination of active

learning and EAs [31].
Specifically, the sample project “anti-cancer biorobots” (see

[21] for details) of the PhysiCell simulator (v.1.6.1) is used to
simulate the NP’s interaction with the tumour, as in previous
works [30], [32], [33]. However, here the need to simulate
complex multi-NP-based treatments leads to an alternation in
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Fig. 10. Average final lengths for combinations of N and K values, and decrease functionality probability.

TABLE I
UNALTERED PARAMETERS OF PHYSICELL SIMULATOR.

Parameter Value

Damage rate 0.03333 min−1

Repair rate 0.004167 min−1

Drug death rate 0.004167 min−1

Elastic coefficient 0.05 min−1

Cargo O2 relative uptake 0.1 min−1

Cargo apoptosis rate 4.065e-5 min−1

Cargo relative adhesion 0
Cargo relative repulsion 5
Cargo release O2 threshold 10 mmHg
Maximum relative cell adhesion distance 1.25
Maximum elastic displacement 50 µm
Maximum attachment distance 18 µm
Minimum attachment distance 14 µm
Motility shutdown detection threshold 0.001
Attachment receptor threshold 0.1
Worker migration speed 2 µm/min
Worker apoptosis rate 0 min−1

Worker O2 relative uptake 0.1 min−1

the source code (Please refer to the Supplementary Material
for details). Nonetheless, similar to the aforementioned works,
here the design of a NP can reflect to a point in a 5-
dimensional space of the following parameters (with their
range in the brackets): attached worker migration bias [0,1],
unattached worker migration bias [0,1], worker relative adhe-
sion [0,10], worker relative repulsion [0,10], worker motility
persistence time (min) [0,10]. The rest of the user-defined
parameters are not altered from the original instance published
by the developers of the simulator and are presented in Table I.

The scenario in the sample project “anti-cancer biorobots”
of the agent-based PhysiCell simulator is the following (for
more extensive details refer to [21]). An initial tumour with
a total radius of 200 µm of cancer cells (approximately 570
cancer cell agents) undergoes growth of a simulated period of 7
days. At that point, the treatment is injected into the simulated
area, comprising of 450 cargo agents and 50 worker agents,
emulating the therapeutic compound and NPs, respectively. A
simulated period of 3 days is then executed, where the worker
agents transport the cargo agents (therapeutic compound) and

deposit them near the cancer cell agents that decay and die
because of the increased concentration of drug agents. The
fitness function of the given point in the parameter space is
the number of cancer cell agents remaining after the simulated
period of 10 days.

Every simulation of these 10 days runs on an Intel R©
Xeon R© CPU E5-2650 at 2.20GHz with 64GB RAM (using 8
of the 48 cores) and is completed at approximately 5 minutes
of wall-clock time. Because of the stochastic nature of the
simulator, a static sampling approach is employed, considering
the mean of 5 runs with the same parameters. In order to
further minimize the noise caused by the stochasticity of the
simulator and, also, to speed up the optimization process,
alternations in the original source code are made in order to
load a single tumour at the initialization of the simulator and
apply the therapy for 3 days (as described in [28]).

One specific tumour, which was derived after a simulated
growth of 7 days of an initial tumour, is used as the new
initial state and the treatment is injected to the simulated area
at t = 0. Then, 3 days are simulated and the evaluation of
a single solution needs 1.5 minutes of wall-clock time (7.5
minutes for the 5 runs for static sampling). Each test in the
following starts with the same randomly produced population
of solutions and evolution is applied for 200 evaluations
of each individual/solution. Thus, the results are provided
for each test after approximately a day wall-clock time of
repeatedly running the simulator.

To accommodate the functionality of injecting the region
around the cancer tumour with more than one types of NPs
with different parameters, we made appropriate alternations in
the source code of the simulator. Without loss of generality a
maximum of 10 different types of NPs is defined. The amount
of NPs (worker agents) is set to 50, despite the number of types
of NPs. These 50 NPs are equally divided among different NP
types. For instance, in testing 2 NP types, 50 worker agents
are divided into two groups of 25; with 5 types of NPs, the
size of each group is ten, etc. Further technical details of the
additions/alternations of the initial source code can be found
in the Supplementary Material.
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Fig. 11. Results from example run of the EA. (a) Evolution of average fitness
of the population and (b) evolution of the best individual in the population
(where numbers indicate the number of types NPs).

V. GENOME GROWTH IN THE SIMULATOR

The optimization of the design of NPs for drug delivery
initially uses a standard steady-state EA and mutation oper-
ators only for a single NP. The population size is P = 20,
reproduction selection is implemented as a tournament of
size T = 2, and replacement selection is the inverse. Off-
spring individuals replace the selected individual only if that
individual is less fit, namely it results in a higher amount
of remaining cancer cell agents. The mutation procedure is
executed on one randomly selected gene by modifying it with
a random step size of s = [−5; 5]%. The computational budget
is set as 1000 evaluations with PhysiCell, thus, given the 5
run static sampling approach, the population evolves for 200
generations.

The results of the evolution with the EA are depicted in Figs.
11 (example run) and 12 (average of 5 runs). Figure 11(a)
shows that the average fitness of the population (remaining
cancer cells agents) converges to c. 880 agents after 200 gen-
erations of the evolution of the population, from c. 950 agents
of the initial random population. That is an improvement of
c. 7.3%. Quite similar results are provided by all the tests
executed, as illustrated in Fig. 12(a) showing the average and
95% confidence levels of the cumulative results. Note here that
the confidence levels of 95% are calculated with the mean and
standard deviation of the sample and indicate the probability
(here 95%) with which the estimated interval contains the
true value of the parameter. For the best individual in the
population the final fitness seems to converge close to 850
agents, while the one initially randomly generated has a fitness
of c. 900, an improvement of 5.5%, for one example run (Fig.
11(b)). The cumulative results depicted in Fig. 12(b) reveal
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Fig. 12. Average and confidence levels (95%) results from 5 runs of EA.
(a) Evolution of average fitness of the population and (b) evolution of the
best individual in the population.

that during the rest of the runs the improvement is slightly
smaller.

In order to enable the variation of genome length —and
hence more than one types of NPs per solution— the mutation
operator described in Section III is incorporated. The mutation
can therefore alter a randomly chosen gene allele or add
one type of NPs (with randomly chosen parameters) to the
simulated treatment. Both cases have the same possibility of
occurring, which is 50%. A maximum of 10 NPs types is
allowed here. As explained before, despite the amount of types
of NPs being tested per treatment, a total of 50 worker agents
are injected in the simulated treatment. The initial population
used for all tests is the same as for the previous tests (only
gene allele mutation) and consisted of solutions with only one
type of NPs. Note that the existence of an additional type (or
multiple types) of NPs potentially alters the fitness landscape
significantly due to the complex interactions with the cancer
cell agents.

With the ability to add multiple types of NPs, the optimiza-
tion process reaches better results within the 200 generations
as depicted in Figs. 13 (example run) and 14 (average of 10
runs). In Fig. 13(a), the average fitness of the population is
depicted for an example run, which converges to c. 450 agents
at the end of the evolution, while the same metric of the initial
random population is c. 950 agents. Thus, the alternation in
the number of types of NPs injected leads to an improvement
of c. 52.6%. Investigating the cumulative results of average
and 95% confidence levels of all the runs that are portrayed
in Fig. 14(a), there is evidently a further improvement of
the average fitness of the population (average of 431 agents).
Moreover, there is an improvement of 52.2% when comparing
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Fig. 13. Results from example run of the EA with variable-length genome.
(a) Evolution of average fitness of the population, (b) evolution of the best
individual in the population (where numbers indicate the number of types
NPs) and (c) composition of population in terms of types of NPs.

the final fitness of the best individual discovered during
one run (approximately 430 agents) with the best individual
randomly generated in the initial generation (c. 900 identical in
all runs), as outlined in Fig. 13(b). In Fig. 14(b) where all the
results of 10 runs are considered, it can be seen that during
the rest of the runs the improvement is similar and slightly
better (average of 405 agents).

Despite the fact that the maximum number of NPs types can
be 10, the composition of the best solutions usually converges
to lower complexity. Taking into consideration the average of
all 10 tests, solutions converge to 8 types (as illustrated in
Fig. 15). Following behaviours observed in the NK model,
as shown in Fig. 13(b), evolution typically adds genes (types
of NPs) quite fast, while later slowly optimizing the best
composition of NPs types. Similar behaviour is observed in
all instances (Fig. 15).

To explore the effect of the added sequence (G) size
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Fig. 14. Average and confidence levels (95%) results from 10 runs of EA with
variable-length genome. (a) Evolution of average fitness of the population,
(b) evolution of the best individual in the population.

0 20 40 60 80 100 120 140 160 180 200

Generations

1

2

3

4

5

6

7

8

9

10

N
u
m

b
e
r 

o
f 
N

P
s
 o

f 
b
e
s
t 
in

d
iv

id
u
a
l

Best individual composition.

Fig. 15. Average and confidence levels (95%) results from 10 runs of EA
with variable-length genome for the composition of the best solution.

variation, in the next experiments we allow mutation to add
two new NPs types. This process reaches similar fitness results
as the addition of one type of NPs per mutation event, as
observed in Figs. 16 (example run) and 17 (average of 10
runs). The average fitness of the population for the example
run, portrayed in Fig. 16(a), converges to c. 445 agents. That
implies an improvement of c. 53.1%, compared with the same
metric of the initial random population c. 950 agents. When
considering the cumulative results of 10 runs, outlined in Fig.
17(a), it is evident that a further improvement of the average
fitness of the population occurs (average of 434 agents). Also,
the final fitness of the best individual produced during the
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Fig. 16. Results from example run of the EA with variable-length genome
adding two types of NPs. (a) Evolution of average fitness of the population,
(b) evolution of the best individual in the population (where numbers indicate
the number of types NPs) and (c) composition of population in terms of types
of NPs.

example run (approximately 415 agents) compared with the
randomly generated initial one (c. 900 agents) is improved
by 53.9%, as given in Fig. 16(b). In Fig. 17(b) where all the
results of 10 runs are considered, it can be established that
during the rest of the runs the improvement is similar and
slightly better (average of 407 agents).

Here, in contrast to adding one type of NPs per mutation
event, the best solutions converge to the maximum available
composition (9 types), as illustrated in Fig. 18. In some of
the runs the highest amount of NPs types is reached by the
100th generation (earlier than the previous case, i.e., the 120th
generation), while in all runs the composition of best solutions
converges to 9 by the 160th generation. As in some cases in
the NK model, whilst fitness is not significantly improved by
the addition of more genes per growth event, longer genomes
emerge. This is an indication of the bloat effect, but one that
is controllable due to the parameter G.

We would like to emphasize that our investigation of the
NK model (Section III) showed that possibility of decreasing
the genome length does not lead to marked difference in the
evolved genome lengths and the final fitness. Therefore, this
option is not tested in the computationally expensive cancer
simulator.

VI. DISCUSSION

The best solution found in this study has a fitness of
approximately 405 cancer agents remaining after the three
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Fig. 17. Average and confidence levels (95%) results from 10 runs of the
EA with variable-length genome adding two types of NPs. (a) Evolution of
average fitness of the population, (b) evolution of the best individual in the
population.
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Fig. 18. Average and confidence levels (95%) results from 10 runs of the EA
with variable-length genome adding two types of NPs for the composition of
the best solution.

days of simulated treatment. Note that the fittest individual
of the initial random population was evaluated at 900 agents,
translating to an improvement of 55%. To further comprehend
the fitness level of this solution, a comparison is drawn
with previous studies utilizing the same simulator and similar
fitness functions, but with different approaches. In [28] the
best solution found indicated a 4.8% fitness improvement
(best fitness of the initial random population was 420 agents,
while the final best fitness was approximately 400 agents),
in [29] an improvement of 13.3% (c. 450-390) and in [30]
an improvement of 16.9% (c. 415-345). As it can be seen,
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the best fitness (in terms of percentage reduction of tumour
size) in this study largely outperforms all previous ones.
However, if the fitness is expressed as the absolute number
of remaining cells, the results are somewhat weaker. This
can be attributed to the following side factors: the initial
population in the aforementioned studies is different than this
one (i.e., the initial best fitness in [30] is c. 450, whereas
it is c. 900 here) and the method in this study operates on
a continuously altering fitness landscape. Furthermore, using
only a simple mutation operator undoubtedly limits the pace of
the evolutionary search. Nevertheless, note that this is the first
attempt of a simulated multi-NP treatment using the physics-
based tumour simulator.

Given that the real-world problem described here needs to
be under a metameric representation, the specialized crossover
operators required are omitted. Instead, the simplest variation
of evolution, mutation operator, is implemented. As a result,
the genome length is controlled to a greater degree com-
pared with a case of utilizing specialized metameric crossover
operators. Moreover, as no significant difference arises from
having both addition and deletion in the genome length while
testing the abstract NK model, this is not tested on the
computationally expensive simulator. As an aspect of future
work, different growth and deletion schemes will be explored,
such as those which self-adapt over time (after [34]), along
with recombination and crossover operators.

Despite the fact that the amount of types of NPs in the
evolution with addition of one type of NPs (Fig. 15) does not
reach the maximum available (i.e., 10), in the case of adding
two types of NPs per step (Fig. 18) the composition reaches
the highest possible (i.e., 9 —because the initial composition
is 1 and there are 2 added per step). Nonetheless, the best
fitnesses found in both cases are quite close. Consequently,
the bloat effect is obvious for the addition of two types of
NPs per step, but the same can not be said for the case of
adding one type of NPs.

VII. CONCLUSION

The effects of genome length are studied here both on an
abstract model and a real-life problem of designing a NP-based
anti-cancer treatment. Firstly, the influence that the ruggedness
of the fitness function landscape has on the genome length
through evolution is investigated with the abstract NK model.
Growth is observed, with the expansion of genome lengths not
obstructed by the ruggedness of the fitness landscape. On the
contrary, the expansion of genome lengths can be encouraged
by the topology of such landscapes, where typical peaks of low
amplitude increase the possibility of higher fitness outcome per
the added randomly generated sequence. It is noteworthy that
no specific advantage is implemented in the abstract model for
larger lengths of genomes, thus the observed limited growth
(contrast to what happens during bloat situations) is explicitly
due to the inherent nature of evolution over rugged fitness
landscapes.

Then, by optimizing the design of NP drug-delivery systems
in a cancer simulator, we investigate the increase of the
genome length in a real-world problem. Despite the fact that

no indication of the best treatment composition (or the number
of different types of NPs) is included in the model, evolved
solutions converge to treatments with eight different types of
NPs, for the method that adds one type of NPs per step.
For the method that adds two types of NPs per step, evolved
solutions converge to slightly more complex treatments (i.e.,
9 types of NPs). This general behaviour of higher growth
with larger sequences added correlates well with observed
behaviour in the NK model. Moreover, as deduced here and
by using other versions of the NK model (after [24]), the
gradual growth through small step increases in genome length
appears more appropriate in the application domain. That
is, whilst the fitness of the solutions found is quite similar,
the higher complexity of NP-based cancer treatment drug
delivery systems is harder to produce, will probably prove
to be more toxic, and has the greater potential for unintended
consequences when used in vivo.
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