Skip to main content

Research Repository

Advanced Search

Yannis Ieropoulos

Image

Yannis Ieropoulos

Professor in Bioenergy & Director of B-B


Neural networks predicting microbial fuel cells output for soft robotics applications (2021)
Journal Article
Tsompanas, M. A., You, J., Philamore, H., Rossiter, J., & Ieropoulos, I. (2021). Neural networks predicting microbial fuel cells output for soft robotics applications. Frontiers in Robotics and AI, 8, https://doi.org/10.3389/frobt.2021.633414

The development of biodegradable soft robotics requires an appropriate eco-friendly source of energy. The use of Microbial Fuel Cells (MFCs) is suggested as they can be designed completely from soft materials with little or no negative effects to the... Read More about Neural networks predicting microbial fuel cells output for soft robotics applications.

Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells (2020)
Journal Article
de Ramón-Fernández, A., Salar-García, M. J., Ruiz Fernández, D., Greenman, J., & Ieropoulos, I. A. (2020). Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells. Energy, 213, https://doi.org/10.1016/j.energy.2020.118806

© 2020 The Authors Microbial fuel cell (MFC) power performance strongly depends on the biofilm growth, which in turn is affected by the feed flow rate. In this work, an artificial neural network (ANN) approach has been used to simulate the effect of... Read More about Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells.

Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes (2020)
Journal Article
Salar-Garcia, M. J., Montilla, F., Quijada, C., Morallon, E., & Ieropoulos, I. (2020). Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes. Applied Energy, 278, https://doi.org/10.1016/j.apenergy.2020.115528

© 2020 The Authors The need for improving the energy harvesting from Microbial Fuel Cells (MFCs) has boosted the design of new materials in order to increase the power performance of this technology and facilitate its practical application. According... Read More about Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes.

Scaling up self-stratifying supercapacitive microbial fuel cell (2020)
Journal Article
Walter, X. A., Santoro, C., Greenman, J., & Ieropoulos, I. A. (2020). Scaling up self-stratifying supercapacitive microbial fuel cell. International Journal of Hydrogen Energy, 45(46), 25240-25248. https://doi.org/10.1016/j.ijhydene.2020.06.070

Self-stratifying microbial fuel cells with three different electrodes sizes and volumes were operated in supercapacitive mode. As the electrodes size increased, the equivalent series resistance decreased, and the overall power was enhanced (small: ES... Read More about Scaling up self-stratifying supercapacitive microbial fuel cell.

Developing 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs) (2020)
Journal Article
Theodosiou, P., Greenman, J., & Ieropoulos, I. A. (2020). Developing 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs). Molecules, 25(16), 1-11. https://doi.org/10.3390/molecules25163635

© 2020 by the authors. Microbial Fuel Cells (MFCs) employ microbial electroactive species to convert chemical energy stored in organic matter, into electricity. The properties of MFCs have made the technology attractive for bioenergy production. Howe... Read More about Developing 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs).

From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights (2020)
Journal Article
Walter, X. A., You, J., Winfield, J., Bajarunas, U., Greenman, J., & Ieropoulos, I. A. (2020). From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights. Applied Energy, 277, https://doi.org/10.1016/j.apenergy.2020.115514

The microbial fuel cell (MFC) technology relies on energy storage and harvesting circuitry to deliver stable power outputs. This increases costs, and for wider deployment into society, these should be kept minimal. The present study reports how a MFC... Read More about From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights.

Complete microbial fuel cell fabrication using additive layer manufacturing (2020)
Journal Article
You, J., Fan, H., Winfield, J., & Ieropoulos, I. A. (2020). Complete microbial fuel cell fabrication using additive layer manufacturing. Molecules, 25(13), https://doi.org/10.3390/molecules25133051

Improving the efficiency of microbial fuel cell (MFC) technology by enhancing the system performance and reducing the production cost is essential for commercialisation. In this study, building an additive manufacturing (AM)-built MFC comprising all... Read More about Complete microbial fuel cell fabrication using additive layer manufacturing.

Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte (2020)
Journal Article
Santoro, C., Walter, X. A., Soavi, F., Greenman, J., & Ieropoulos, I. (2020). Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte. Electrochimica Acta, 353, https://doi.org/10.1016/j.electacta.2020.136530

In this work, a membraneless microbial fuel cell (MFC) with an empty volume of 1.5 mL, fed continuously with hydrolysed urine, was tested in supercapacitive mode (SC-MFC). In order to enhance the power output, a double strategy was used: i) a double... Read More about Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte.

A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells (2020)
Journal Article
Gajda, I., You, J., Santoro, C., Greenman, J., & Ieropoulos, I. A. (2020). A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells. Electrochimica Acta, 353, https://doi.org/10.1016/j.electacta.2020.136388

This work is presenting for the first time the use of inexpensive and efficient anode material for boosting power production, as well as improving electrofiltration of human urine in tubular microbial fuel cells (MFCs). The MFCs were constructed usin... Read More about A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells.

Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species (2020)
Journal Article
Gajda, I., Obata, O., Greenman, J., & Ieropoulos, I. A. (2020). Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species. Scientific Reports, 10, https://doi.org/10.1038/s41598-020-60626-x

This work presents a small scale and low cost ceramic based microbial fuel cell, utilising human urine into electricity, while producing clean catholyte into an initially empty cathode chamber through the process of electro-osmostic drag. It is the f... Read More about Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species.