Skip to main content

Research Repository

Advanced Search

Yannis Ieropoulos

Image

Yannis Ieropoulos

Professor in Bioenergy & Director of B-B


Scaling up self-stratifying supercapacitive microbial fuel cell (2020)
Journal Article
Walter, X. A., Santoro, C., Greenman, J., & Ieropoulos, I. A. (2020). Scaling up self-stratifying supercapacitive microbial fuel cell. International Journal of Hydrogen Energy, 45(46), 25240-25248. https://doi.org/10.1016/j.ijhydene.2020.06.070

Self-stratifying microbial fuel cells with three different electrodes sizes and volumes were operated in supercapacitive mode. As the electrodes size increased, the equivalent series resistance decreased, and the overall power was enhanced (small: ES... Read More about Scaling up self-stratifying supercapacitive microbial fuel cell.

From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights (2020)
Journal Article
Walter, X. A., You, J., Winfield, J., Bajarunas, U., Greenman, J., & Ieropoulos, I. A. (2020). From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights. Applied Energy, 277, https://doi.org/10.1016/j.apenergy.2020.115514

The microbial fuel cell (MFC) technology relies on energy storage and harvesting circuitry to deliver stable power outputs. This increases costs, and for wider deployment into society, these should be kept minimal. The present study reports how a MFC... Read More about From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights.

Complete microbial fuel cell fabrication using additive layer manufacturing (2020)
Journal Article
You, J., Fan, H., Winfield, J., & Ieropoulos, I. A. (2020). Complete microbial fuel cell fabrication using additive layer manufacturing. Molecules, 25(13), https://doi.org/10.3390/molecules25133051

Improving the efficiency of microbial fuel cell (MFC) technology by enhancing the system performance and reducing the production cost is essential for commercialisation. In this study, building an additive manufacturing (AM)-built MFC comprising all... Read More about Complete microbial fuel cell fabrication using additive layer manufacturing.

Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte (2020)
Journal Article
Santoro, C., Walter, X. A., Soavi, F., Greenman, J., & Ieropoulos, I. (2020). Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte. Electrochimica Acta, 353, https://doi.org/10.1016/j.electacta.2020.136530

In this work, a membraneless microbial fuel cell (MFC) with an empty volume of 1.5 mL, fed continuously with hydrolysed urine, was tested in supercapacitive mode (SC-MFC). In order to enhance the power output, a double strategy was used: i) a double... Read More about Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte.

A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells (2020)
Journal Article
Gajda, I., You, J., Santoro, C., Greenman, J., & Ieropoulos, I. A. (2020). A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells. Electrochimica Acta, 353, https://doi.org/10.1016/j.electacta.2020.136388

This work is presenting for the first time the use of inexpensive and efficient anode material for boosting power production, as well as improving electrofiltration of human urine in tubular microbial fuel cells (MFCs). The MFCs were constructed usin... Read More about A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells.

Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species (2020)
Journal Article
Gajda, I., Obata, O., Greenman, J., & Ieropoulos, I. A. (2020). Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species. Scientific Reports, 10(1), https://doi.org/10.1038/s41598-020-60626-x

This work presents a small scale and low cost ceramic based microbial fuel cell, utilising human urine into electricity, while producing clean catholyte into an initially empty cathode chamber through the process of electro-osmostic drag. It is the f... Read More about Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species.

Multidimensional benefits of improved sanitation: Evaluating 'PEE POWER®' in Kisoro, Uganda (2020)
Journal Article
You, J., Staddon, C., Cook, A., Walker, J., Boulton, J., Powell, W., & Ieropoulos, I. (2020). Multidimensional benefits of improved sanitation: Evaluating 'PEE POWER®' in Kisoro, Uganda. International Journal of Environmental Research and Public Health, 17(7), https://doi.org/10.3390/ijerph17072175

With 2.3 billion people around the world lacking adequate sanitation services, attention has turned to alternative service provision models. This study suggests an approach for meeting the sanitation challenge, especially as expressed in Sustainable... Read More about Multidimensional benefits of improved sanitation: Evaluating 'PEE POWER®' in Kisoro, Uganda.

Resilience and limitations of MFC anodic community when exposed to antibacterial agents (2020)
Journal Article
Ieropoulos, I., Obata, O., Greenman, J., Ieropoulos, Y., Kurt, H., & Chandran, K. (2020). Resilience and limitations of MFC anodic community when exposed to antibacterial agents. Bioelectrochemistry, 134, https://doi.org/10.1016/j.bioelechem.2020.107500

This study evaluates the fate of certain bactericidal agents introduced into microbial fuel cell (MFC) cascades and the response of the microbial community. We tested the response of functioning urine fed MFC cascades using two very different bacteri... Read More about Resilience and limitations of MFC anodic community when exposed to antibacterial agents.

Urine in bioelectrochemical systems: An overall review (2020)
Journal Article
Santoro, C., Garcia, M. J. S., Walter, X. A., You, J., Theodosiou, P., Gajda, I., …Ieropoulos, I. (2020). Urine in bioelectrochemical systems: An overall review. ChemElectroChem, 7(6), 1312-1331. https://doi.org/10.1002/celc.201901995

In recent years, human urine has been successfully used as an electrolyte and organic substrate in bioelectrochemical systems (BESs) mainly due of its unique properties. Urine contains organic compounds that can be utilised as a fuel for energy recov... Read More about Urine in bioelectrochemical systems: An overall review.

Scalability and stacking of self-stratifying microbial fuel cells treating urine (2020)
Journal Article
Walter, X. A., Santoro, C., Greenman, J., & Ieropoulos, I. A. (2020). Scalability and stacking of self-stratifying microbial fuel cells treating urine. Bioelectrochemistry, 133, https://doi.org/10.1016/j.bioelechem.2020.107491

The scalability of Microbial fuel cells (MFCs) is key to the development of stacks. A recent study has shown that self-stratifying membraneless MFCs (S-MFCs) could be scaled down to 2 cm without performance deterioration. However, the scaling-up limi... Read More about Scalability and stacking of self-stratifying microbial fuel cells treating urine.

;