Skip to main content

Research Repository

Advanced Search

Yannis Ieropoulos

Image

Yannis Ieropoulos

Professor in Bioenergy & Director of B-B


Neural networks predicting microbial fuel cells output for soft robotics applications (2021)
Journal Article
Tsompanas, M. A., You, J., Philamore, H., Rossiter, J., & Ieropoulos, I. (2021). Neural networks predicting microbial fuel cells output for soft robotics applications. Frontiers in Robotics and AI, 8, https://doi.org/10.3389/frobt.2021.633414

The development of biodegradable soft robotics requires an appropriate eco-friendly source of energy. The use of Microbial Fuel Cells (MFCs) is suggested as they can be designed completely from soft materials with little or no negative effects to the... Read More about Neural networks predicting microbial fuel cells output for soft robotics applications.

Impact of inoculum type on the microbial community and power performance of urine-fed microbial fuel cells (2020)
Journal Article
Salar-Garcia, M. J., Obata, O., Kurt, H., Chandran, K., Greenman, J., & Ieropoulos, I. A. (2020). Impact of inoculum type on the microbial community and power performance of urine-fed microbial fuel cells. Microorganisms, 8(12), https://doi.org/10.3390/microorganisms8121921

Bacteria are the driving force of the microbial fuel cell (MFC) technology, which benefits from their natural ability to degrade organic matter and generate electricity. The development of an efficient anodic biofilm has a significant impact on the p... Read More about Impact of inoculum type on the microbial community and power performance of urine-fed microbial fuel cells.

Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators (2020)
Journal Article
Ieropoulos, I., de Ramón Fernández, A., Walter, X. A., Gurauskis, J., & Salar-García, M. J. (2021). Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators. Electrochimica Acta, 367, https://doi.org/10.1016/j.electacta.2020.137385

Ceramic materials based on naturally occurring clays are a low cost and environmentally friendly alternative to commercial polymer-based membranes in bioelectrochemical systems. In this work, ceramic membranes containing different amounts of iron oxi... Read More about Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators.

Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine (2020)
Journal Article
Merino-Jimenez, I., Obata, O., Pasternak, G., Gajda, I., Greenman, J., & Ieropoulos, I. (2021). Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine. Process Biochemistry, 101, 294-303. https://doi.org/10.1016/j.procbio.2020.10.014

Microbial fuel cells (MFCs) offer an excellent solution to tackle some of the major challenges currently faced by humankind: sustainable energy sources, waste management and water stress. Besides treating wastewater and producing useful electricity f... Read More about Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine.

Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells (2020)
Journal Article
de Ramón-Fernández, A., Salar-García, M. J., Ruiz Fernández, D., Greenman, J., & Ieropoulos, I. A. (2020). Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells. Energy, 213, https://doi.org/10.1016/j.energy.2020.118806

© 2020 The Authors Microbial fuel cell (MFC) power performance strongly depends on the biofilm growth, which in turn is affected by the feed flow rate. In this work, an artificial neural network (ANN) approach has been used to simulate the effect of... Read More about Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells.

Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes (2020)
Journal Article
Salar-Garcia, M. J., Montilla, F., Quijada, C., Morallon, E., & Ieropoulos, I. (2020). Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes. Applied Energy, 278, https://doi.org/10.1016/j.apenergy.2020.115528

© 2020 The Authors The need for improving the energy harvesting from Microbial Fuel Cells (MFCs) has boosted the design of new materials in order to increase the power performance of this technology and facilitate its practical application. According... Read More about Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes.

Scaling up self-stratifying supercapacitive microbial fuel cell (2020)
Journal Article
Walter, X. A., Santoro, C., Greenman, J., & Ieropoulos, I. A. (2020). Scaling up self-stratifying supercapacitive microbial fuel cell. International Journal of Hydrogen Energy, 45(46), 25240-25248. https://doi.org/10.1016/j.ijhydene.2020.06.070

Self-stratifying microbial fuel cells with three different electrodes sizes and volumes were operated in supercapacitive mode. As the electrodes size increased, the equivalent series resistance decreased, and the overall power was enhanced (small: ES... Read More about Scaling up self-stratifying supercapacitive microbial fuel cell.

Developing 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs) (2020)
Journal Article
Theodosiou, P., Greenman, J., & Ieropoulos, I. A. (2020). Developing 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs). Molecules, 25(16), 1-11. https://doi.org/10.3390/molecules25163635

© 2020 by the authors. Microbial Fuel Cells (MFCs) employ microbial electroactive species to convert chemical energy stored in organic matter, into electricity. The properties of MFCs have made the technology attractive for bioenergy production. Howe... Read More about Developing 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs).

From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights (2020)
Journal Article
Walter, X. A., You, J., Winfield, J., Bajarunas, U., Greenman, J., & Ieropoulos, I. A. (2020). From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights. Applied Energy, 277, https://doi.org/10.1016/j.apenergy.2020.115514

The microbial fuel cell (MFC) technology relies on energy storage and harvesting circuitry to deliver stable power outputs. This increases costs, and for wider deployment into society, these should be kept minimal. The present study reports how a MFC... Read More about From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights.

Complete microbial fuel cell fabrication using additive layer manufacturing (2020)
Journal Article
You, J., Fan, H., Winfield, J., & Ieropoulos, I. A. (2020). Complete microbial fuel cell fabrication using additive layer manufacturing. Molecules, 25(13), https://doi.org/10.3390/molecules25133051

Improving the efficiency of microbial fuel cell (MFC) technology by enhancing the system performance and reducing the production cost is essential for commercialisation. In this study, building an additive manufacturing (AM)-built MFC comprising all... Read More about Complete microbial fuel cell fabrication using additive layer manufacturing.