Skip to main content

Research Repository

Advanced Search

All Outputs (60)

Laser additive manufacturing of TiB2-modified Cu15Ni8Sn/GH3230 heterogeneous materials: Processability, interfacial microstructure and mechanical performance (2024)
Journal Article
Gao, J., Han, Q., Soe, S., Wang, L., Zhang, Z., Zhang, H., …Yang, S. (2024). Laser additive manufacturing of TiB2-modified Cu15Ni8Sn/GH3230 heterogeneous materials: Processability, interfacial microstructure and mechanical performance. Materials Science and Engineering: A, 900, Article 146496. https://doi.org/10.1016/j.msea.2024.146496

Cu/Ni heterogeneous materials integrate excellent thermal conductivity and high-temperature mechanical properties, enabling them to be widely used in the aerospace domain. Differences in the thermal and physical properties of the Cu and Ni materials,... Read More about Laser additive manufacturing of TiB2-modified Cu15Ni8Sn/GH3230 heterogeneous materials: Processability, interfacial microstructure and mechanical performance.

Optimization of additively manufactured graphene-enhanced geopolymer concrete (2024)
Presentation / Conference
Sinha, P., Soe, S., Nounu, G., Jorgensen, T., Qureshi, T., & Ball, R. (2024, April). Optimization of additively manufactured graphene-enhanced geopolymer concrete. Poster presented at ICT 52nd Convention, ICT Convention- Hillscourt Hotel

This project will develop high-performance graphene-enhanced geopolymer concrete optimized for additive manufacturing applications. Mix designs employing the additives GGBS, Fly ash, and Metakaolin will be combined with a graphene nano additive to en... Read More about Optimization of additively manufactured graphene-enhanced geopolymer concrete.

Quantifying the microstructural and biomechanical changes in the porcine ventricles during growth and remodelling (2023)
Journal Article
Ahmad, F., Soe, S., Albon, J., Errington, R., & Theobald, P. (2023). Quantifying the microstructural and biomechanical changes in the porcine ventricles during growth and remodelling. Acta Biomaterialia, 171, 166-192. https://doi.org/10.1016/j.actbio.2023.09.044

Cardiac tissue growth and remodelling (G & R) occur in response to the changing physiological demands of the heart after birth. The early shift to pulmonary circulation produces an immediate increase in ventricular workload, causing microstructural a... Read More about Quantifying the microstructural and biomechanical changes in the porcine ventricles during growth and remodelling.

The design of specific flat mechanical test specimen and grips for use in a cryogenic selfreacting environmental chamber (2023)
Presentation / Conference
Soe, S. (2023, October). The design of specific flat mechanical test specimen and grips for use in a cryogenic selfreacting environmental chamber. Presented at Royal Aeronautical Society's 8th Aircraft Structural Design Conference 2023, London, UK

The presentation was aimed at proposing a novel design of specific flat mechanical test specimen and grips for use in a cryogenic selfreacting environmental chamber. The development is motivated by Airbus to innovate environmentally friendly aircraf... Read More about The design of specific flat mechanical test specimen and grips for use in a cryogenic selfreacting environmental chamber.

Advancing dysphagia-oriented multi-ingredient meal development: Optimising hydrocolloid incorporation in 3D printed nutritious meals (2023)
Journal Article
Εkonomou, S., Hadnađev, M., Gioxari, A., Abosede, O. R., Soe, S., & Stratakos, A. C. (2024). Advancing dysphagia-oriented multi-ingredient meal development: Optimising hydrocolloid incorporation in 3D printed nutritious meals. Food Hydrocolloids, 147, 109300. https://doi.org/10.1016/j.foodhyd.2023.109300

Dysphagia (DP) is a growing health concern in today's ageing population, leading to high demand for DP-oriented food. 3D printing is a promising novel technology for developing new attractive and appetising products. Therefore, we aimed to develop a... Read More about Advancing dysphagia-oriented multi-ingredient meal development: Optimising hydrocolloid incorporation in 3D printed nutritious meals.

Optimisation of an elastomeric pre-buckled honeycomb helmet liner for advanced impact mitigation (2023)
Journal Article
Adams, R., Soe, S., & Theobald, P. (2023). Optimisation of an elastomeric pre-buckled honeycomb helmet liner for advanced impact mitigation. Smart Materials and Structures, 32(9), Article 095012. https://doi.org/10.1088/1361-665x/ace94b

Advances in computational modelling now offer an efficient route to developing novel helmet liners that could exceed contemporary materials’ performance. Furthermore, the rise of accessible additive manufacturing presents a viable route to achieving... Read More about Optimisation of an elastomeric pre-buckled honeycomb helmet liner for advanced impact mitigation.

Novel use of robotic 3D paste printing technology for the creation of ceramic shell investment casting moulds (2023)
Presentation / Conference
Bolouri, A., Jorgensen, T., Khayatzadeh, S., Soe, S., Leon, M., Lightfoot, S., …Farzadnia, F. (2023, June). Novel use of robotic 3D paste printing technology for the creation of ceramic shell investment casting moulds

This paper presentation outlines early-stage, ongoing research into novel approaches with Additive Layer Manufacturing for the direct manufacture of ceramic shell investment casting moulds. The research is focused on the use of 3D printing with refra... Read More about Novel use of robotic 3D paste printing technology for the creation of ceramic shell investment casting moulds.

Compressive behaviour of a square origami surface-based lattice structure fabricated by selective laser melting (2023)
Conference Proceeding
Gao, J., Han, Q., Soe, S., Liu, Z., Feng, J., Zhang, Z., & Wang, L. (2023). Compressive behaviour of a square origami surface-based lattice structure fabricated by selective laser melting. In R. J. Howlett, S. G. Scholz, & R. Setchi (Eds.), SDM 2022: Sustainable Design and Manufacturing (57-66). https://doi.org/10.1007/978-981-19-9205-6_6

Selective laser melting (SLM) is a metal additive manufacturing process that shows significant advantages in manufacturing lattice structures. In this paper, a novel surface-based square origami structure made of a nickel-based superalloy was fabrica... Read More about Compressive behaviour of a square origami surface-based lattice structure fabricated by selective laser melting.

An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens (2022)
Journal Article
Εkonomou, S. Ι., Soe, S., & Stratakos, A. C. (2023). An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens. Journal of the Mechanical Behavior of Biomedical Materials, 137, 105536. https://doi.org/10.1016/j.jmbbm.2022.105536

Antimicrobial 3D printed surfaces made of PLA and TPU polymers loaded with copper (Cu), and silver (Ag) nanoparticles (NPs) were developed via fused deposition modeling (FDM). The potential antimicrobial effect of the 3D printed surfaces against Esch... Read More about An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens.

Laser powder bed fusion of TiB2-modified Cu15Ni8Sn alloy: Processability, microstructure and mechanical performance (2022)
Journal Article
Gao, J., Han, Q., Wang, L., Liu, Z., Soe, S., Zhang, Z., & Gu, Y. (2022). Laser powder bed fusion of TiB2-modified Cu15Ni8Sn alloy: Processability, microstructure and mechanical performance. Materials Science and Engineering: A, 855, 143879. https://doi.org/10.1016/j.msea.2022.143879

Cu15Ni8Sn is widely used in the aerospace and electronics domains because of its good conductivity and toughness. Due to the material's high laser reflectivity and thermal conductivity, however, employing the laser powder bed fusion (LPBF) additive m... Read More about Laser powder bed fusion of TiB2-modified Cu15Ni8Sn alloy: Processability, microstructure and mechanical performance.

Response of gyroid lattice structures to impact loads (2022)
Journal Article
Ramos, H., Santiago, R., Soe, S., Theobald, P., & Alves, M. (2022). Response of gyroid lattice structures to impact loads. International Journal of Impact Engineering, 164, Article 104202. https://doi.org/10.1016/j.ijimpeng.2022.104202

This paper reports on a comprehensive investigation of gyroid lattice structures subject to impact loading. AlSi10Mg samples were manufactured using selective laser melting (SLM) and mechanically characterized using Digital Image Correlation (DIC). U... Read More about Response of gyroid lattice structures to impact loads.

Mechanical behaviour of additively manufactured elastomeric pre-buckled honeycombs under quasi-static and impact loading (2022)
Journal Article
Adams, R., Townsend, S., Soe, S., & Theobald, P. (2022). Mechanical behaviour of additively manufactured elastomeric pre-buckled honeycombs under quasi-static and impact loading. Materials and Design, 213, Article 110368. https://doi.org/10.1016/j.matdes.2021.110368

Selective laser sintering has been used to manufacture different structural variations of a pre-buckled circular honeycomb. The mechanical behaviour of these structures has been examined under both quasi-static and dynamic impact loading. Pre-buckled... Read More about Mechanical behaviour of additively manufactured elastomeric pre-buckled honeycombs under quasi-static and impact loading.

Finite element-based optimisation of an elastomeric honeycomb for impact mitigation in helmet liners (2021)
Journal Article
Adams, R., Townsend, S., Soe, S., & Theobald, P. (2022). Finite element-based optimisation of an elastomeric honeycomb for impact mitigation in helmet liners. International Journal of Mechanical Sciences, 214, Article 106920. https://doi.org/10.1016/j.ijmecsci.2021.106920

Finite element simulation was used to analyse the response of an elastomeric pre-buckled honeycomb structure under impact loading, to establish its suitability for use in helmet liners. A finite element-based optimisation was performed using a search... Read More about Finite element-based optimisation of an elastomeric honeycomb for impact mitigation in helmet liners.

Auxetic metamaterial optimisation for head impact mitigation in American football (2021)
Journal Article
Hanna, B., Adams, R., Townsend, S., Robinson, M., Soe, S., Stewart, M., …Theobald, P. (2021). Auxetic metamaterial optimisation for head impact mitigation in American football. International Journal of Impact Engineering, 157, Article 103991. https://doi.org/10.1016/j.ijimpeng.2021.103991

American football has a comparatively high rate of sports-related concussions, despite mitigating strategies including the use of protective helmets. The traditional energy absorbing component, elastomeric foam pads, have limited scope for leveraging... Read More about Auxetic metamaterial optimisation for head impact mitigation in American football.

Investigating the dynamic compression response of elastomeric, additively manufactured fluid-filled structures via experimental and finite element analyses (2021)
Journal Article
Soe, S., Adams, R., Hossain, M., & Theobald, P. (2021). Investigating the dynamic compression response of elastomeric, additively manufactured fluid-filled structures via experimental and finite element analyses. Additive Manufacturing, 39, 101885. https://doi.org/10.1016/j.addma.2021.101885

This study evaluates a fluid-filled, closed-cell lattice as a novel route to reducing peak acceleration in impact environments. A conical structure was designed and built using fused filament fabrication. One structure was manufactured hollow (100% a... Read More about Investigating the dynamic compression response of elastomeric, additively manufactured fluid-filled structures via experimental and finite element analyses.

Laser powder bed fusion of WC-reinforced Hastelloy-X composite: Microstructure and mechanical properties (2020)
Journal Article
Han, Q., Gu, Y., Gu, H., Yin, Y., Song, J., Zhang, Z., & Soe, S. (2021). Laser powder bed fusion of WC-reinforced Hastelloy-X composite: Microstructure and mechanical properties. Journal of Materials Science, 56, 1768-1782. https://doi.org/10.1007/s10853-020-05327-6

Nickel-based superalloys such as Hastelloy X (HX) are widely used in gas turbine engines for their exceptional oxidation resistance and high-temperature strength. The addition of ceramic reinforcement further enhances these superalloys’ mechanical pe... Read More about Laser powder bed fusion of WC-reinforced Hastelloy-X composite: Microstructure and mechanical properties.

The effect of heat treatment of AlSi10Mg on the energy absorption performance of surface-based structures (2020)
Conference Proceeding
Robinson, M., Han, Q., Gu, H., Soe, S., & Setchi, R. (2021). The effect of heat treatment of AlSi10Mg on the energy absorption performance of surface-based structures. In S. Scholz, R. Howlett, & R. Setchi (Eds.), Sustainable Design and Manufacturing 2020. , (395-402). https://doi.org/10.1007/978-981-15-8131-1_35

Additive Manufacturing of cellular lattice structures offers opportunities to fine-tune the mechanical response by altering geometric variables. It is known that heat treatment cycles provide an effective way of altering mechanical properties while r... Read More about The effect of heat treatment of AlSi10Mg on the energy absorption performance of surface-based structures.

Using FFF and topology optimisation to increase crushing strength in equestrian helmets (2020)
Conference Proceeding
Soe, S., Robinson, M., Gaisin, K., Adams, R., Palkowski, T., & Theobald, P. (2021). Using FFF and topology optimisation to increase crushing strength in equestrian helmets. In S. Scholz, R. Howlett, & R. Setchi (Eds.), Sustainable Design and Manufacturing 2020. , (369-377). https://doi.org/10.1007/978-981-15-8131-1_33

International standards ensure that equestrian helmets achieve high performance. Recently, one such standard (PAS 015) was revised to include a lateral deformation requirement, ensuring helmets can withstand the potential crushing forces associated w... Read More about Using FFF and topology optimisation to increase crushing strength in equestrian helmets.

Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing (2019)
Journal Article
Han, Q., Gu, Y., Soe, S., Lacan, F., & Setchi, R. (2020). Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing. Optics and Laser Technology, 124, Article 105984. https://doi.org/10.1016/j.optlastec.2019.105984

Nickel-based superalloys such as Hastelloy X (HX) are widely used in gas turbine engine applications and the aerospace industry. HX is susceptible to hot cracking, however, when processed using additive manufacturing technologies such as laser powder... Read More about Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing.