Emilien Arnaud
Use of artificial intelligence to manage patient flow in emergency department during the COVID-19 pandemic: A prospective, single-center study
Arnaud, Emilien; Elbattah, Mahmoud; Ammirati, Christine; Dequen, Gilles; Ghazali, Daniel Aiham
Authors
Mahmoud Elbattah
Christine Ammirati
Gilles Dequen
Daniel Aiham Ghazali
Abstract
BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic, calculation of the number of emergency department (ED) beds required for patients with vs. without suspected COVID-19 represented a real public health problem. In France, Amiens Picardy University Hospital (APUH) developed an Artificial Intelligence (AI) project called "Prediction of the Patient Pathway in the Emergency Department" (3P-U) to predict patient outcomes. MATERIALS: Using the 3P-U model, we performed a prospective, single-center study of patients attending APUH's ED in 2020 and 2021. The objective was to determine the minimum and maximum numbers of beds required in real-time, according to the 3P-U model. Results A total of 105,457 patients were included. The area under the receiver operating characteristic curve (AUROC) for the 3P-U was 0.82 for all of the patients and 0.90 for the unambiguous cases. Specifically, 38,353 (36.4%) patients were flagged as "likely to be discharged", 18,815 (17.8%) were flagged as "likely to be admitted", and 48,297 (45.8%) patients could not be flagged. Based on the predicted minimum number of beds (for unambiguous cases only) and the maximum number of beds (all patients), the hospital management coordinated the conversion of wards into dedicated COVID-19 units. DISCUSSION AND CONCLUSIONS: The 3P-U model's AUROC is in the middle of range reported in the literature for similar classifiers. By considering the range of required bed numbers, the waste of resources (e.g., time and beds) could be reduced. The study concludes that the application of AI could help considerably improve the management of hospital resources during global pandemics, such as COVID-19.
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 1, 2022 |
Online Publication Date | Aug 5, 2022 |
Publication Date | Aug 5, 2022 |
Deposit Date | Aug 8, 2022 |
Publicly Available Date | Aug 9, 2022 |
Journal | International journal of environmental research and public health |
Print ISSN | 1661-7827 |
Electronic ISSN | 1660-4601 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 19 |
Issue | 15 |
Pages | e9667 |
DOI | https://doi.org/10.3390/ijerph19159667 |
Keywords | Health, Toxicology and Mutagenesis; Toxicology; Public Health, Environmental health; Occupational Health, COVID-19, artificial intelligence, triage, management of organizations, emergency department |
Public URL | https://uwe-repository.worktribe.com/output/9851033 |
Publisher URL | https://www.mdpi.com/1660-4601/19/15/9667 |
Files
Use of artificial intelligence to manage patient flow in emergency department during the COVID-19 pandemic: A prospective, single-center study
(3.6 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Variational autoencoder for image-based augmentation of eye-tracking data
(2021)
Journal Article
Mining the Irish hip fracture database: Learning factors contributing to care outcomes
(2020)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search