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Abstract: Background: During the coronavirus disease 2019 (COVID-19) pandemic, calculation of
the number of emergency department (ED) beds required for patients with vs. without suspected
COVID-19 represented a real public health problem. In France, Amiens Picardy University Hospital
(APUH) developed an Artificial Intelligence (AI) project called “Prediction of the Patient Pathway in
the Emergency Department” (3P-U) to predict patient outcomes. Materials: Using the 3P-U model,
we performed a prospective, single-center study of patients attending APUH’s ED in 2020 and 2021.
The objective was to determine the minimum and maximum numbers of beds required in real-time,
according to the 3P-U model. Results A total of 105,457 patients were included. The area under the
receiver operating characteristic curve (AUROC) for the 3P-U was 0.82 for all of the patients and
0.90 for the unambiguous cases. Specifically, 38,353 (36.4%) patients were flagged as “likely to be
discharged”, 18,815 (17.8%) were flagged as “likely to be admitted”, and 48,297 (45.8%) patients could
not be flagged. Based on the predicted minimum number of beds (for unambiguous cases only) and
the maximum number of beds (all patients), the hospital management coordinated the conversion
of wards into dedicated COVID-19 units. Discussion and conclusions: The 3P-U model’s AUROC
is in the middle of range reported in the literature for similar classifiers. By considering the range
of required bed numbers, the waste of resources (e.g., time and beds) could be reduced. The study
concludes that the application of AI could help considerably improve the management of hospital
resources during global pandemics, such as COVID-19.

Keywords: COVID-19; artificial intelligence; triage; management of organizations; emergency
department

1. Introduction

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
can lead to a respiratory syndrome known as coronavirus disease 2019 (COVID-19). This
disease first appeared in the Hubei province of China in December 2019, and then rapidly
spread across the world [1]. SARS-CoV-2 arrived in Europe via Italy, Spain, and then
France (first in the country’s Picardy region, which is home to 1.9 million inhabitants).
Amiens Picardy University Hospital (APUH, Amiens, France) was in the frontline, and
the initial response to the epidemic was coordinated by the hospital’s emergency medical
service (EMS). Thus, APUH had to change its organizational structure in response to
this new situation. Firstly, we created a dedicated EMS team to answer the calls about
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COVID-19 and to triage the suspected COVID-19 patients. The team (comprising medical
students and emergency physicians) advised on whether the patient could stay at home
or whether an ambulance or a mobile intensive care unit (ICU) should be dispatched [2,3].
This organizational structure enabled the EMS to continue to respond to other medical
emergencies. Secondly, we organized a regional bed management system [4] in which
an ICU dispatcher managed the intensive care beds and an infectious disease specialist
managed the non-intensive-care beds. Thirdly, we changed the organizational structure
of the emergency department (ED) as a function of the number of COVID-19 patients, by
dedicating a part of the ED to the patients with suspected COVID-19 (with a dedicated
care team, reception room, and care areas), replacing it with a short-stay unit for suspected
COVID-19 patients when the epidemic intensified, and finally, moving back to a dedicated
ED zone.

Overcrowding in EDs is a concern worldwide. Several studies from different countries
have reached the same conclusion: EDs are chronically overcrowded, which leads to
unintended breaches and failings in terms of patient safety and the quality of care [5]. In
turn, these problems influence patient management. A patient admitted to an inappropriate
hospital unit will have a longer length of stay (LOS) and higher care costs [6]. Other issues
identified in the literature include a longer hospital stay [6], a higher morbidity rate [7],
a higher mortality rate [8–11], and a greater proportion of patients who leave the ED
without being seen [12]. Many of the research groups are working on ways of tackling these
problems and limiting the effects of overcrowding: pre-hospital dispatch before attending
at the ED (to encourage alternative healthcare provision); better bed coordination; triage by
emergency medical staff; front-loading investigations; triage systems; fast tracks; optimized
transfer to the destination ward (even if the bed is not ready); and a greater number of
available beds [13–15].

Determining the number of beds required, respectively, for the COVID-19 patients and
non-COVID-19 patients was a real challenge throughout the epidemic. Depending on the
demand for the COVID-19 beds, the wards had to be converted from their usual specialty
into COVID-19 units. Thus, the remaining COVID-free wards became multidisciplinary,
and admitted patients from several specialties [16]. In parallel, we had already begun to
work on an Artificial Intelligence (AI) project called “Prediction of the Patient Pathway
in the Emergency Department” (3P-U). This project led to the development of a set of
software for extracting and preprocessing data, and eventually developing and deploying
a predictive model. It consists of a multilayer perceptron that operates on the structured
and unstructured data stored in electronic health records (EHRs), and predicts a patient’s
hospital admission or discharge at the end of care in the ED [17]. The categorical data are
one-hot encoded. The dataset is split randomly, using the conventional ratios of 80% for
training and 20% for validation. We have used 3P-U on a daily basis since January 2019,
including during the COVID-19 pandemic. The primary objective of the present study
was to determine the required number of beds in real time. The second objective was to
assess the 3P-U model’s contribution to the fast-track triage versus the standard triage of
suspected COVID-19 patients and, presumably, non-COVID-19 patients.

2. Materials and Methods
2.1. Study Design

We conducted a prospective, single-center study of the patients attending the ED at
APUH, in order to validate the 3P-U model’s performance in the specific context of the 2020–
2021 epidemic of COVID-19. The present report complies with the Transparent Reporting
of a Multivariable Prediction Model for Individual Prognosis or Diagnosis statement [18].
The study was authorized by a hospital committee with for research not requiring approval
by an institutional review board, under the reference PI2019_843_0066. The APUH has
1700 beds, a total of 139K patient admissions per year, and 60K ED admissions per year.
The ED has three zones: a fast-track zone; the standard ED zone; and a resuscitation room.
During the COVID-19 epidemic, we duplicated the fast and the usual ED pathway in
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the dedicated COVID-19 zone, and we dedicated two beds in the resuscitation room to
suspected COVID-19 patients.

2.2. Participants

We included all of the adults attending the ED (downstream of the nursing triage
stage) from 1 December 2019 to 31 December 2021. We excluded the patients who were
immediately transferred to the resuscitation room upon arrival and those with no triage
data. We used the 3P-U predictive model, as deployed at APUH. The 3P-U model predicted
the physician’s final decision (admission vs. discharge) on the basis of the triage data. The
model had been trained on the data from 233,814 patients who attended the ED between
2015 and 2018. In an internal validation and with a threshold of 0.5, the area under the
receiver operating characteristic curve (AUROC) was 83%, the precision (i.e., the positive
predictive value) was 72%, and the recall (i.e., the sensitivity) was 62% [17]. The predictors
were: the demographic characteristics (age and sex); the clinical triage characteristics (heart
rate, blood pressure, blood oxygen saturation, body temperature, capillary blood glucose
level, capillary blood ketone level, oxygen flow, hemoglobin capillary test, expired breath
alcohol level, pain intensity, urine tests, and the French Emergency Nurses Classification
in Hospital (FRENCH) triage scale [19]); the non-clinical triage characteristics (the arrival
or referral route (referred by a physician, an accident in the workplace, a sports accident,
etc.), whether or not the patient was accompanied, the waiting status (sitting, stretchered,
etc.), the family context, the time of arrival); and the unstructured data (triage notes and
the medical history). In the specific context of the ED, some of the data were not collected
on purpose (DNPC) and do not correspond to the missing data per se (for example, the
capillary blood glucose level was not measured for the patients with straightforward
trauma injuries). The method for completing the missing values depended on the type of
variable (see the Appendix A).

2.3. Intervention

On arrival at the ED, the nurses categorized the patients according to the FRENCH
triage scale and flagged the patient as probably having COVID-19 or not. All of the
data reported in the hospital’s electronic health records (Resurgences®, Berger-Levrault,
Boulogne-Billancourt, France) were automatically extracted by 3P-U, and then preprocessed
using the same pipeline as in the development stage. The prediction was calculated and
stored in the database. Using a nasopharyngeal swab, the suspected COVID-19 patients
were tested with a lateral flow test (Panbio COVID-19 Ag (Nasal Version), Abbott Chicago,
IL, USA), and then a confirmatory PCR test (TaqPath COVID 19 CE-IVD RT-PCR Kit,
ThermoFisher, Waltham, MA, USA). Neither the flag for suspected COVID-19, the lateral
flow test result, nor the PCR test result were included as features in the model, since these
variables were absent from the training phase. The bed management team had access to a
dashboard with the COVID-19 patients’ real-time status: “not known”; “to be admitted”
(decided by a physician); “likely to be admitted” (3P-U’s recommendation); “likely to be
discharged” (3P-U’s recommendation); or “to be discharged” (decided by a physician). The
development stage and the validation stage differed with regard to the context (before vs.
during the COVID-19 epidemic) and the interpretation of the probability of admission. We
defined “unambiguous patients” as those for whom the predicted probability of admission
was below 0.2 (interpreted as “likely to be discharged”) or over 0.6 (interpreted as “likely
to be admitted). Between 0.2 and 0.6, we considered that the patient was in a “grey zone”
and was flagged as “status not known”.

2.4. Statistical Analysis

The continuous variables were described as the mean (standard deviation (SD)), and
the categorical variables were described as the number of patients (percentage). To describe
the population, we retrieved the PCR test results performed in the ED. The COVID-19
PCR tests were performed on all of the admitted patients and the symptomatic patients
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before admission. The model’s performance was assessed with regard to the AUROC.
We modelled two sets of patients: all of the patients (to determine the maximum number
of beds required); and “unambiguous patients” (to assess the minimum number of beds
required). The 3P-U’s decision and the final decision by a physician were compared based
on precision, recall, and accuracy for the two sets of patients. Precision was defined as the
ratio between the true detected admissions and all of the detected admissions. The recall
was defined as the ratio between the true detected admissions and all of the admissions.
The accuracy was defined as the proportion of the patients with a correct classification.

3. Results
3.1. Characteristics of the Study Population

Between 1 December 2019 and 31 December 2021, 136,139 patients attended the
APUH ED. After the exclusion of 30,682 patients (4044 immediately admitted to the ICU,
21,991 with missing triage data, and 4647 who left without being seen), we included
105,457 patients. According to the physician’s final decision, a total of 33,841 (32%) patients
were admitted (21,470 (21%) were admitted to a medical ward; 7604 (7%) were admitted to a
surgical ward; and 4641 (4%) were admitted to the ICU) and 71,616 (68%) were discharged.
The FRENCH triage scale ratings and other patient characteristics are summarized in
Table 1. Figure 1 shows the changes over time in the PCR results in the Somme county of
France (where the APUH is located) during the inclusion period. The complete dataset and
the DNPC are described in Appendix A.

Table 1. Characteristics of the study population.

Demographic Characteristics Overall

Number of patients, n (%) 105,457 (100%)
Age, mean ± SD 51 ± 22

Sex, n (%)
Male 50,639 (48%)

Female 54,818 (52%)

Clinical triage characteristics

Heart rate (/min), mean ± SD 86 ± 18
Systolic blood pressure (mmHg), mean ± SD 138 ± 24
Diastolic blood pressure (mmHg), mean ± SD 79 ± 23

Blood oxygen saturation (%), mean ± SD 99 ± 2
Body temperature (◦C), mean ± SD 36.4 ± 0.7

Capillary blood glucose level (mmol/L), mean ± SD 7.33 ± 4.19
Capillary blood ketone level (mmol/L), mean ± SD 0.98 ± 1.97

Oxygen flow (L/min), mean ± SD 0.6 ± 3.7
Capillary blood hemoglobin level (dg/dL), mean ± SD 11.72 ± 2.96

Expired breath alcohol level (g/L), mean ± SD 1.81 ± 0.78
Bladder volume (mL), mean ± SD 334 ± 305

Pain intensity, mean ± SD 3 ± 3
Patient rating on the FRENCH triage scale, n (%)

1 235 (< 1%)
2 3975 (4%)
3 56,679 (54%)
4 28,363 (27%)
5 14,849 (14%)

Outcome

Admission to a medical ward 21,470 (21%)
Admission to a surgical ward 7604 (7%)

Admission to the ICU 4641 (4%)
Discharge 71,616 (68%)
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3.2. The Model’s Performance

Regarding the classification accuracy, the model’s AUROC was 0.82 for all of the
patients and 0.90 for the unambiguous patients (Appendix B). According to the interpreta-
tion rules described above, 38,353 (36.4%) patients were flagged by 3P-U as “likely to be
discharged”; 18,815 (17.8%) patients were flagged as “likely to be admitted”; and 48,297
(45.8%) patients could not be flagged. With regard to the accuracy (defined as the number of
correctly classified patients as a proportion of the total number of flagged patients), 49,377
(86.4%) of the 57,168 flagged patients were correctly classified. Of these 49,377 patients,
13,840 (24.2%) were correctly classified as “likely to be admitted”, and 35,537 (62.2%) were
correctly classified as “likely to be discharged”. In contrast, 7791 (13.6%) patients were
wrongly classified: 4975 (8.7%) patients were wrongly classified as “likely to be admitted”
but were finally discharged; and 2816 (4.9%) patients were misclassified as “likely to be
discharged” but were finally admitted. Hence, for the unambiguous patients, the recall (i.e.,
sensitivity) was 83.1%, the precision was 73.6%, the specificity was 87.7% and the predictive
negative value was 92.7% (Figure 2). Based on the minimum number of admissions (for
the unambiguous patients only) and the maximum number of admissions (for all of the
patients) (Figure 3), the bed managers coordinated the conversion of wards into dedicated
COVID-19 units. The bed managers also used this indicator to roll back the dedicated
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COVID-19 units and re-establish the ward’s initial specialty. The 3P-U dashboard was
considered more efficient than manual estimation.
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3.3. Individual Predictions

At the triage stage, the nurses classified 4031 (3.8%) patients as probably having
COVID-19 and 101,426 (96.2%) as probably not having non-COVID-19. In the COVID-19
group, 3P-U flagged 768 (0.7%) probable admissions and 1420 (1.3%) probable discharges.
In the non-COVID-19 group, 3P-U flagged 18,018 (17.1%) probable admissions and 36,886
(35.1%) probable discharges (Figure 4).
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4. Discussion
4.1. The 3P-U threshold

The AUROC for the 3P-U model was 82%, which is in the middle of the range of values
reported in the literature for similar classifiers [21]. The choice of the threshold was difficult
to address. In our earlier work [6], we chose 0.5 as the threshold because it gave the highest
F1-score (an indicator based on the harmonic mean of the precision and the recall): in the
present study, the precision was 72% and the recall was 62% (Appendix D). The presence
of the false positives and false negatives meant that time and resources were wasted: bed
managers booked beds for patients who were finally discharged. Hence, to minimize the
false positives and false negatives, we next considered the unambiguous patients only (i.e.,
those with admission probabilities at each end of the scale). If the probability of admission
is below 0.2, the patient will almost certainly be discharged. Conversely, if the probability
of admission is over 0.6, the patient will almost certainly be admitted. When the model
was applied to the unambiguous patients, the AUROC was 0.90, which corresponds to
very good performance. Not interpreting the predictions for ambiguous cases is a safety
strategy for the patients and is profitable for the caregivers (i.e., time savings).



Int. J. Environ. Res. Public Health 2022, 19, 9667 8 of 13

4.2. Related Work

Researchers have developed several approaches for trying to reduce ED congestion
using machine learning, e.g., enhancing triage [22] or predicting a diagnosis (such as
stroke [23] or ischemic heart disease [24]). Graham et al.’s model [25] used the same
features as the 3P-U model to predict the same outcome. The AUROC for Graham et al.’s
model (0.86) was higher than that of the 3P-U. Although Graham et al. did not specify
how they selected the threshold, their model had a sensitivity of 54% and a specificity of
90%. We selected a different threshold, and so the 3P-U was more sensitive (0.597, vs. 0.537
for Graham et al.’s model) but less specific (0.650, vs. 0.903 for Graham et al.’s model).
Unfortunately, Graham et al. did not report their precision, so the models’ respective
performances have to be compared with regard to specificity. Our present results highlight
the importance of threshold selection: the AUROC reflects the model’s overall performance,
whereas sensitivity and specificity reflect the performance for a real decision. Hong et al. [5]
trained their model (using similar features) to predict admission. Their highest AUROC
was 92% (using all of the features), with a sensitivity of 82% and a specificity of 85%. Hong
et al. chose their threshold and compared their models by setting the specificity to 85%.
Tan et al. [26] built a model that predicted the patient’s outcome on the basis of the triage
data, the medical history, and the laboratory data. The highest AUROC for admission
prediction was 84%, using a random forest model. Tan et al. incorporated the model into
a web service and added the latter to the hospital’s information system for operational
use. Many researchers [5,25] have built models in a laboratory environment, but few have
reported on operational use.

4.3. Implications

When we started to apply the model in production, we observed that the “grey zone”
patients were not always correctly categorized; this meant that resources were wasted.
Indeed, the interpretation of the prediction given to the bed manager caused more confusion
than we expected. For example, the manager started to look for a bed, but the patient was
finally discharged. As a result, we considered all of the patients (to calculate the maximum
number of beds required) and the unambiguous patients only (to calculate the minimum
number of beds required). The bed manager received this information in real time, which
helped him/her to optimize the search for beds. To prevent full occupancy of the specialist
beds in APUH’s wards, the bed manager had to send the patients not requiring specialist
care to smaller medical centers. This search was time-consuming, and so we developed
a specific application for flagging up free beds [4]. This overview of the numbers of beds
required for the suspected COVID-19 patients and the presumed non-COVID-19 patients
was clearly of value to the bed manager, and the patient-by-patient prediction helped to
attribute beds.

Although the 3P-U saved the bed manager time, the final decision on the patient’s
destination was taken by the ED’s physicians. In their review, Sanchez-Salmeron et al. [22]
stated that all of the automatic medical predictions must be checked by a human. This
is particularly important in novel situations (such as the COVID-19 epidemic), of which
physicians have little experience. The possibility of classification errors must always be
considered. In the present study, the risk was limited by the physician’s final decision.
The 3P-U helped to organize the ED. Each day, a physician acted as a “flow manager”.
She/he had an overview of the attending patients, the level of congestion in each sector,
and possible bottlenecks. Developing a manual summary is time-consuming, and the
summary might not be up to date when the ED is overcrowded. The 3P-U automatically
provides this overview, along with a dashboard (Appendix C). Although the very urgent
cases will always be obvious for the physicians, 3P-U’s algorithm can classify patients more
rapidly, and for many patients in parallel. This is likely to give physicians more time to
care for patients.

The APUH is a regional referral center: no patients are diverted to other hospitals, and
patients are sometimes diverted from smaller regional hospitals to APUH. The increase
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in patient flow during the COVID-19 epidemic did not change this strategy, regardless of
3P-U’s deployment.

4.4. Strengths and Limitations

Our study claims to have the following set of strengths. First, the 3P-U was validated
in real time, using the EHRs, with no additional tasks for the triage nurse. Secondly,
the application was deployed almost in the same way as in production and was tested
in real-life scenarios. However, it is acknowledged that the 3P-U model’s performance
was not the same as under experimental conditions: it was trained on the data from
the patients attending the ED before the COVID-19 epidemic, who differed from those
attending the ED during the epidemic [27]. Despite this difference, the model’s performance
(AUROC = 82%) was generally acceptable, and the model could be used to anticipate
bed attributions. Thirdly, we made the prediction safer by applying safety margins: the
probabilities between 0.2 and 0.6 were not interpreted.

The present study also has some limitations. First, this was a single-center study, and
hence, the model was trained with the data from one hospital only. It is conceived that the
model could be conveniently trained in another center, but it would not be transferrable
“as is”. Indeed, our model is representative of the APUH’s population. Using the current
model in another medical center without a specific training stage would reproduce the
strategies and procedures used in the APUH, which might not be applicable. Secondly,
we only considered the triage data, which contains less medical information than the data
obtained later in the care pathway. Thirdly, we considered unambiguous patients only,
rather than the full population. Fourthly, we did not study the direct impact on the patient.
The LOS and admission to the appropriate ward would probably be good indicators of
this impact. However, the changes in the organization and the greater number of patients
admitted during the COVID-19 epidemic would probably have biased the measurements
of the LOS.

5. Conclusions

The 3P-U AI model helped to manage patients in the APUH ED during the COVID-19
epidemic by predicting the maximum and minimum numbers of beds required. It also
helped to categorize the suspected COVID-19 patients and the presumed non-COVID-19
patients in the fast-track and standard ED pathways. The model was utilized effectively
for categorizing the individual patients and providing an overview of predictions (the
total size of the various categories of patient). In view of that, the present study confirms
that AI models can provide a vital support for streamlining the ED operations, and also
for curbing the waste of resources. Future studies should focus on the two remaining
problems: predicting the definitive diagnosis and predicting the patient’s LOS in a ward
after transfer from the ED. The admission to the right specialty ward is known to be
associated with a lower mortality rate, and prediction of the LOS would help to optimize
the use of hospital resources.
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Appendix A. Characteristics of the Patients

Characteristics Overall Missing Value Imputation Strategy

Demographic characteristics
Number of patients, n (%) 10,5457 (100%)
Age, mean ± SD 51 ± 22 0 (00%) None
Sex, n (%) 0 (00%) None
Male 50,639 (48%)
Female 54,818 (52%)

Clinical triage characteristics
Heart rate (/min), mean ± SD 86 ± 18 20,253 (19%) Fixed: 80
Systolic blood pressure (mmHg), mean ± SD 138 ± 24 25,558 (24%) Fixed: 120
Diastolic blood pressure (mmHg), mean ± SD 79 ± 23 25,558 (24%) Fixed: 80
Blood oxygen saturation (%), mean ± SD 99 ± 2 38 (<1%) Fixed: 100
Body temperature (◦C), mean ± SD 36.4 ± 0.7 19,769 (18%) Fixed: 37.4
Capillary blood glucose level (mmol/L), mean ± SD 7.33 ± 4.19 83,606 (79%) Fixed: 5.0
Capillary blood ketone level (mmol/L), mean ± SD 0.98 ± 1.97 104,207 (98%) Fixed: 0.0
Oxygen flow (L/min), mean ± SD 0.6 ± 3.7 73,410 (69%) Fixed: 100
Capillary blood hemoglobin level (dg/dL), mean ± SD 11.72 ± 2.96 102,533 (97%) Fixed: 12.0
Expired breath alcohol level (g/L), mean ± SD 1.81 ± 0.78 102,625 (97%) Fixed: 0.0
Bladder volume (mL), mean ± SD 334 ± 305 105,078 (99%) Fixed: 0.0
Pain intensity, mean ± SD 3 ± 3 17,095 (16%) Fixed: 0
FRENCH triage scale rating, n (%) 1356 (1%) Most frequent

1 235 (<1%)
2 3975 (4%)
3 56,679 (54%)
4 28,363 (27%)
5 14,849 (14%)

Urine tests
Blood in urine, n (%) 104,696 (99%) Fixed: 0

0 223 (29%)
Traces 167 (22%)
+ 93 (12%)
++ 93 (12%)
+++ 184 (24%)
++++ 1 (<1%)

Urine nitrite, n (%) 104,669 (99%) Fixed: 0
0 661 (87%)
+ 89 (87%)
++ 5 (<1%)
+++ 1 (<1%)
++++ 2 (<1%)

Urine leukocyte count, n (%) 104,698 (99%) Fixed: 0
0 475 (63%)
Traces 93 (12%)
+ 94 (12%)
++ 37 (5%)
+++ 60 (8%)

Urine glucose level, n (%) 104,698 (99%) Fixed: 0
0 690 (90%)
Traces 33 (4%)
+ 7 (<1%)
++ 25 (3%)
+++ 3 (<1%)
++++ 1 (<1%)

Urine ketone level, n (%) 104,698 (99%) Fixed: 0
0 564 (74%)
Traces 66 (9%)
+ 58 (8%)
++ 40 (5%)
+++ 13 (2%)
++++ 18 (2%)
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Characteristics Overall Missing Value Imputation Strategy

Outcome 0 (0%)
Admission to a medical ward 21,466 (20%)
Admission to a surgical ward 7604 (7%)
Admission to the ICU 4640 (5%)
Discharge 71,747 (68%)

Non-clinical triage characteristics
Accompanying person, n (%) 47,236 (44%) Most frequent

Spouse 26,047 (45%)
Unrelated person 13,928 (24%)
Parent 9437 (16%)
Other family member 4984 (9%)
Grandparent 2355 (4%)
Police 1147 (2%)

Waiting status, n (%) 25,109 (23%) Most frequent
Stretcher 56,146 (70%)
Wheelchair 12,418 (15%)
Standing 11,517 (14%)
Other 267 (<1%)

Circumstances, n (%) 70,653 (67%) Most frequent
Other 16,887 (48%)
Referred by the EMSs 8068 (23%)
Fall 2046 (6%)
Accident in the workspace 1783 (5%)
Accident at home 1466 (4%)
Fainting 447 (<1%)
Sports accident 375 (<1%)
Road traffic accident 336 (<1%)

Family context, n (%) 34,097 (32%) Most frequent
Informed 45,183 (64%)
Present 20,657 (29%)
Family due to be informed 5124 (7%)
Informing the family refused by the patient 396 (<1%)

Week of the year 0 (0%)
Day of the week 0 (0%)
Time of day 0 (0%)

The urinary tests are qualitative scaled from 0 to ++++ and refer to the strength of the detection.

Appendix B. Receiver Operating Characteristic Curve for the 3P-U Model and the
Study Data
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classification model’s performance. It is useful for 255 imbalanced outcome problems, 
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The interpretation is simple: a F1-score of 50% corresponds to TP = (FN + FP) and 
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The F1-score (the harmonic mean of the precision and the recall) is an indicator of a
classification model’s performance. It is useful for 255 imbalanced outcome problems, such
as our admission/non-admission problem (30% vs 70%, respectively). Considering the true
positives (TP), the true negatives (TN), the false positives (FP), the false negatives (FN), the
precision, and the recall, the F1-score is:
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The interpretation is simple: a F1-score of 50% corresponds to TP = (FN + FP) and
means than the model makes two errors for each correct prediction.
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