Skip to main content

Research Repository

Advanced Search

Characteristics of pattern formation and evolution in approximations of physarum transport networks

Jones, Jeff

Characteristics of pattern formation and evolution in approximations of physarum transport networks Thumbnail


Authors

Jeff Jones



Abstract

Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on Chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation. © 2010 Massachusetts Institute of Technology.

Citation

Jones, J. (2010). Characteristics of pattern formation and evolution in approximations of physarum transport networks. Artificial Life, 16(2), 127-153. https://doi.org/10.1162/artl.2010.16.2.16202

Journal Article Type Article
Publication Date Mar 1, 2010
Deposit Date Jun 5, 2013
Publicly Available Date Nov 15, 2016
Journal Artificial Life
Print ISSN 1064-5462
Electronic ISSN 1530-9185
Publisher Massachusetts Institute of Technology Press (MIT Press)
Peer Reviewed Peer Reviewed
Volume 16
Issue 2
Pages 127-153
DOI https://doi.org/10.1162/artl.2010.16.2.16202
Keywords pattern formation, pattern evolution, Physarum, transport networks
Public URL https://uwe-repository.worktribe.com/output/980579
Publisher URL http://dx.doi.org/10.1162/artl.2010.16.2.16202
Additional Information Additional Information : 3 month embargo from time of publishing before putting on Institutional Repository

Files





Downloadable Citations