Fariba Goodarzian
A new modified social engineering optimizer algorithm for engineering applications
Goodarzian, Fariba; Ghasemi, Peiman; Kumar, Vikas; Abraham, Ajith
Authors
Peiman Ghasemi
Professor Vikas Kumar Vikas.Kumar@uwe.ac.uk
Professor in Operations and Supply Chain Management
Ajith Abraham
Abstract
Nowadays, a great deal of attention is paid to metaheuristic algorithms to reach the approximate solution in an acceptable computational time. As one of the recent-developed successful metaheuristics, Social Engineering Optimizer (SEO) algorithm is according to the inspiration of the rules of social engineering to solve approximate optimization problems. In this research, a Modified Social Engineering Optimizer algorithm (MSEO) by using an adjustment operator is proposed in which there are some assessment criteria for defender and attacker to determine and calculate the weight simultaneously for the first time. This enhancement comprises adding adjustment operators to improve the performance of SEO in terms of search accuracy and running time. Most notably, this operator is utilized to make a better new generation and improve the interaction between the search phases. The adjustment operator strategy is also applied to a novel division based on the best person. As an extensive comparison, the suggested algorithm is tested on fourteen standard benchmark functions and compared with ten well-established and recent optimization algorithms as well as the main version of the SEO algorithm. This algorithm is also tested for sensitivities on the parameters. In this regard, a set of engineering applications were provided to prove and validate the MSEO algorithm for the first time. The experimental outcomes show that the suggested algorithm produces very accurate results which are better than the SEO and other compared algorithms. Most notably, the MSEO provides a very competitive output and a high convergence rate.
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 25, 2022 |
Online Publication Date | Feb 22, 2022 |
Publication Date | 2022-05 |
Deposit Date | Feb 8, 2022 |
Publicly Available Date | Feb 23, 2023 |
Journal | Soft Computing |
Print ISSN | 1432-7643 |
Electronic ISSN | 1433-7479 |
Publisher | Springer (part of Springer Nature) |
Peer Reviewed | Peer Reviewed |
Volume | 26 |
Pages | 4333–4361 |
DOI | https://doi.org/10.1007/s00500-022-06837-y |
Keywords | Meta-heuristic algorithms; Modified Social Engineering Optimizer; Benchmark functions; Engineering applications. |
Public URL | https://uwe-repository.worktribe.com/output/9005002 |
Files
A New Modified Social Engineering Optimizer Algorithm for Engineering Applications
(2.2 Mb)
PDF
Licence
http://www.rioxx.net/licenses/all-rights-reserved
Publisher Licence URL
http://www.rioxx.net/licenses/all-rights-reserved
Copyright Statement
This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00500-022-06837-y
A New Modified Social Engineering Optimizer Algorithm for Engineering Applications
(969 Kb)
Document
Licence
http://www.rioxx.net/licenses/all-rights-reserved
Publisher Licence URL
http://www.rioxx.net/licenses/all-rights-reserved
Copyright Statement
This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00500-022-06837-y
You might also like
The role of the state for managing voluntary food sustainability standards democratically
(2023)
Journal Article
Guest editorial: Modelling the business and societal decisions under the impact of COVID-19
(2023)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search