Lisa Mol Lisa.Mol@uwe.ac.uk
Professor of Geomorphology and Heritage in Conflict
Effect of flood conditions on the deterioration of porous clay-based brick
Mol, L; Tomor, A
Authors
A Tomor
Abstract
Man-made materials represent an increasingly large proportion of geomaterials that are used to build up a rapidly expanding urbanised landscape. The deterioration of such materials is of increasing concern, in particular in light of the projected increase in storm and flood events and their associated high water levels. The effect of prolonged saturation in porous materials, man-made as well as natural, can lead to accelerated deterioration. This can be of particular concern for load-bearing structural materials, for example bridges. In this study, the effect of moisture movement has been investigated for brick masonry, as one of the most commonly used porous building materials. Saturation of brick masonry can be of particular concern for historical masonry, such as masonry arch bridges in conjunction with under increasing levels of long-term traffic loading. While flooding can lead to scour and sudden collapse of bridges, saturation can also lead to accelerated medium and long-term deterioration. A series of small-scale laboratory tests have been carried out on brick masonry to identify the effects of saturation on the material properties and changes in the rate of deterioration. Brick masonry prisms have been loaded to failure under quasi-static and long-term cyclic compression and monitored with the help of acoustic emission technique, accelerometers, linear variable differential transformers (LVDTs), permeametry and brick surface hardness measurements. Under quasi-static loading saturated samples showed significant reduction in the load capacity and increased fracture development. Under fatigue loading the number of cycles to failure reduced significantly for saturated specimens and characteristic changes in material parameters have been related to stages of fatigue deterioration. Test results indicated that increasing flood events can accelerate moisture-related deterioration in porous brick masonry.
Presentation Conference Type | Poster |
---|---|
Conference Name | AGU Fall Meeting 2018 |
Acceptance Date | Oct 3, 2017 |
Publicly Available Date | Jun 7, 2019 |
Peer Reviewed | Not Peer Reviewed |
Keywords | brick, porosity, flood, bridges, infrastructure |
Public URL | https://uwe-repository.worktribe.com/output/879998 |
Additional Information | Title of Conference or Conference Proceedings : AGU 2018 |
Files
AGU poster_3.pdf
(2.5 Mb)
PDF
You might also like
Measuring rock hardness in the field
(2014)
Book Chapter
Shot to pieces and shocked to the core
(2015)
Journal Article
Bullet impacts and built heritage damage 1640–1939
(2018)
Journal Article
Photoacclimation by arctic cryoconite phototrophs
(2017)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search