Madeleine E. Bartlett
What can you see? Identifying cues on internal states from the movements of natural social interactions
Bartlett, Madeleine E.; Edmunds, Charlotte E. R.; Belpaeme, Tony; Thill, Serge; Lemaignan, S�verin
Authors
Charlotte E. R. Edmunds
Tony Belpaeme
Serge Thill
Severin Lemaignan Severin.Lemaignan@uwe.ac.uk
Associate Professor in Social Robotics and AI
Abstract
© 2019 Bartlett, Edmunds, Belpaeme, Thill and Lemaignan. In recent years, the field of Human-Robot Interaction (HRI) has seen an increasing demand for technologies that can recognize and adapt to human behaviors and internal states (e.g., emotions and intentions). Psychological research suggests that human movements are important for inferring internal states. There is, however, a need to better understand what kind of information can be extracted from movement data, particularly in unconstrained, natural interactions. The present study examines which internal states and social constructs humans identify from movement in naturalistic social interactions. Participants either viewed clips of the full scene or processed versions of it displaying 2D positional data. Then, they were asked to fill out questionnaires assessing their social perception of the viewed material. We analyzed whether the full scene clips were more informative than the 2D positional data clips. First, we calculated the inter-rater agreement between participants in both conditions. Then, we employed machine learning classifiers to predict the internal states of the individuals in the videos based on the ratings obtained. Although we found a higher inter-rater agreement for full scenes compared to positional data, the level of agreement in the latter case was still above chance, thus demonstrating that the internal states and social constructs under study were identifiable in both conditions. A factor analysis run on participants' responses showed that participants identified the constructs interaction imbalance, interaction valence and engagement regardless of video condition. The machine learning classifiers achieved a similar performance in both conditions, again supporting the idea that movement alone carries relevant information. Overall, our results suggest it is reasonable to expect a machine learning algorithm, and consequently a robot, to successfully decode and classify a range of internal states and social constructs using low-dimensional data (such as the movements and poses of observed individuals) as input.
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 6, 2019 |
Online Publication Date | Jun 26, 2019 |
Publication Date | Jun 26, 2019 |
Deposit Date | Nov 26, 2019 |
Publicly Available Date | Nov 27, 2019 |
Journal | Frontiers Robotics AI |
Electronic ISSN | 2296-9144 |
Publisher | Frontiers Media |
Peer Reviewed | Peer Reviewed |
Volume | 6 |
Article Number | 49 |
DOI | https://doi.org/10.3389/frobt.2019.00049 |
Keywords | social psychology, human-robot interaction, machine learning, social interaction, recognition |
Public URL | https://uwe-repository.worktribe.com/output/4742843 |
Files
What Can You See? Identifying Cues on Internal States From the Movements of Natural Social Interactions
(1.2 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Copyright © 2019 Bartlett, Edmunds, Belpaeme, Thill and Lemaignan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
You might also like
Artificial Cognition for Social Human-Robot Interaction: An Implementation
(2016)
Journal Article
The Symmetry of Partner Modelling
(2016)
Journal Article
Generating spatial referring expressions in a social robot: Dynamic vs. non-ambiguous
(2019)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search