Ruobing Li
Development of U-model enhanced nonlinear dynamic control systems —Framework, algorithms and validation
Li, Ruobing
Authors
Abstract
This study aims to develop the classical model-based U-control design framework to enhance its robustness and reduce its dependence on model accuracy. By absorbing the design concepts of other advanced control algorithms, firstly, based on the discrete-time U-control algorithm, a continuous-time (CT) U-model based dynamic inversion algorithm is proposed. Then the CT U-control system design procedures are presented and explained step by step with numerical and simulation demonstrations of the linear and nonlinear U-control system design examples. Secondly, the U-control algorithm develops two mainstream nonlinear robust control algorithms, disturbances suppression and disturbances compensation, while maintaining its system dynamic cancellation characteristics, including two-degree-of-freedom U-model-based internal model control (UTDF-IMC), Disturbance observer-based U-control (DOBUC), sliding mode enhanced U-control (U-SMC) and U-model based double sliding mode control (UDSMC) algorithms. At the same time this study first developed and applied the U-control method to a practical industry application: robust quadrotor trajectory tracking control. The proposed UDSMC method and multiple-input and multiple-output extended-state-observer (MIMO-ESO) established the quadrotor flight control system. The difficulties associated with quadrotor velocity measurement disturbances and uncertain aerodynamics are successfully addressed in this control design. A rigorous theoretical analysis has been carried out to determine whether the proposed control system can achieve stable trajectory tracking performance, and a comparative real-time experimental study has also been carried out to verify the better effectiveness of the proposed control system than the classical SMC and built-in PID control system. This study is clearly novel as the methods and experiments it proposed have not been researched before.
Thesis Type | Thesis |
---|---|
Deposit Date | Apr 25, 2023 |
Publicly Available Date | Sep 26, 2023 |
Public URL | https://uwe-repository.worktribe.com/output/10708609 |
Award Date | Sep 26, 2023 |
Files
Development of U-model enhanced nonlinear dynamic control systems —Framework, algorithms and validation
(13.9 Mb)
PDF
You might also like
Disturbance-observer-based u-control (Dobuc) for nonlinear dynamic systems
(2021)
Journal Article
U-model-based double sliding mode control (UDSM-control) of nonlinear dynamic systems
(2021)
Journal Article
U-model-based two-degree-of-freedom internal model control of nonlinear dynamic systems
(2021)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search