Skip to main content

Research Repository

Advanced Search

The domination parameters of cubic graphs

Zverovich, Igor E.; Zverovich, Vadim

The domination parameters of cubic graphs Thumbnail


Authors

Igor E. Zverovich



Abstract

Let ir(G), γ(G), i(G), β0(G), Γ(G) and IR(G) be the irredundance number, the domination number, the independent domination number, the independence number, the upper domination number and the upper irredundance number of a graph G, respectively. In this paper we show that for any nonnegative integers k 1, k 2, k 3, k 4, k 5 there exists a cubic graph G satisfying the following conditions: γ(G) - ir(G) ≤ k 1, i(G) - γ(G) ≤ k 2, β0(G) - i(G) > k 3, Γ(G) - β0(G) - k 4, and IR(G) - Γ(G) - k 5. This result settles a problem posed in [9]. © Springer-Verlag 2005.

Journal Article Type Article
Publication Date Jun 1, 2005
Deposit Date Sep 24, 2015
Publicly Available Date Feb 19, 2016
Journal Graphs and Combinatorics
Print ISSN 0911-0119
Electronic ISSN 1435-5914
Publisher Springer Verlag
Peer Reviewed Peer Reviewed
Volume 21
Issue 2
Pages 277-288
DOI https://doi.org/10.1007/s00373-005-0608-1
Keywords cubic graphs, domination parameters
Public URL https://uwe-repository.worktribe.com/output/1056441
Publisher URL http://dx.doi.org/10.1007/s00373-005-0608-1
Additional Information Additional Information : The final publication is available at Springer via http://dx.doi.org/10.1007/s00373-005-0608-1
Contract Date Feb 19, 2016

Files





You might also like



Downloadable Citations