Igor E. Zverovich
The domination parameters of cubic graphs
Zverovich, Igor E.; Zverovich, Vadim
Abstract
Let ir(G), γ(G), i(G), β0(G), Γ(G) and IR(G) be the irredundance number, the domination number, the independent domination number, the independence number, the upper domination number and the upper irredundance number of a graph G, respectively. In this paper we show that for any nonnegative integers k 1, k 2, k 3, k 4, k 5 there exists a cubic graph G satisfying the following conditions: γ(G) - ir(G) ≤ k 1, i(G) - γ(G) ≤ k 2, β0(G) - i(G) > k 3, Γ(G) - β0(G) - k 4, and IR(G) - Γ(G) - k 5. This result settles a problem posed in [9]. © Springer-Verlag 2005.
Citation
Zverovich, V. E., Zverovich, I. E., Zverovich, I., & Zverovich, V. (2005). The domination parameters of cubic graphs. Graphs and Combinatorics, 21(2), 277-288. https://doi.org/10.1007/s00373-005-0608-1
Journal Article Type | Article |
---|---|
Publication Date | Jun 1, 2005 |
Journal | Graphs and Combinatorics |
Print ISSN | 0911-0119 |
Publisher | Springer Verlag |
Peer Reviewed | Peer Reviewed |
Volume | 21 |
Issue | 2 |
Pages | 277-288 |
DOI | https://doi.org/10.1007/s00373-005-0608-1 |
Keywords | cubic graphs, domination parameters |
Public URL | https://uwe-repository.worktribe.com/output/1056441 |
Publisher URL | http://dx.doi.org/10.1007/s00373-005-0608-1 |
Additional Information | Additional Information : The final publication is available at Springer via http://dx.doi.org/10.1007/s00373-005-0608-1 |
Files
The Domination Parameters of Cubic Graphs.pdf
(153 Kb)
PDF
You might also like
Two-graph building interior representation for emergency response applications
(2016)
Presentation / Conference
CUBER: Critical Urban Buildings Emergency Response
(2016)
Presentation / Conference
Emergency response in complex buildings: Automated selection of safest and balanced routes
(2016)
Journal Article