The Domination Parameters of Cubic Graphs

Igor E. Zverovich ${ }^{* \dagger}$
RUTCOR - Rutgers Center for Operations Research
Rutgers, The State University of New Jersey
Piscataway, NJ 08854-8003
USA
Vadim E. Zverovich*
Department of Mathematical Sciences
Brunel University, Uxbridge
Middlesex, UB8 3PH
UK
Vadim.Zverovich@brunel.ac.uk

January 27, 2005

Abstract

Let $i r(G), \gamma(G), i(G), \beta_{0}(G), \Gamma(G)$ and $\operatorname{IR}(G)$ be the irredundance number, the domination number, the independent domination number, the independence number, the upper domination number and the upper irredundance number of a graph G, respectively. In this paper we show that for any nonnegative integers $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ there exists a cubic graph G satisfying the following conditions: $\gamma(G)-i r(G) \geq k_{1}$, $i(G)-\gamma(G) \geq k_{2}, \beta_{0}(G)-i(G) \geq k_{3}, \Gamma(G)-\beta_{0}(G) \geq k_{4}$, and $I R(G)-\Gamma(G) \geq k_{5}$. This result settles a problem posed in [9].

1 Introduction and Main Result

All graphs will be finite and undirected without multiple edges. If G is a graph, $V(G)$ denotes the set, and $|G|$ the number, of vertices in G. Let $N(x)$ denote the neighborhood of a vertex x, and let $\langle X\rangle$ denote the subgraph of G induced by $X \subseteq V(G)$. Also let $N(X)=\cup_{x \in X} N(x)$ and $N[X]=N(X) \cup X$.

A set $I \subseteq V(G)$ is called independent if no two vertices of I are adjacent. A set X is called a dominating set if $N[X]=V(G)$. An independent dominating set is a vertex subset that is both independent and dominating, or equivalently, is maximal independent.

[^0]The independence number $\beta_{0}(G)$ is the maximum cardinality of a (maximal) independent set of G, and the independent domination number $i(G)$ is the minimum cardinality taken over all maximal independent sets of G. The domination number $\gamma(G)$ is the minimum cardinality of a (minimal) dominating set of G, and the upper domination number $\Gamma(G)$ is the maximum cardinality taken over all minimal dominating sets of G. For $x \in X$, the set

$$
P N(x, X)=P N(x)=N[x]-N[X-\{x\}]
$$

is called the private neighborhood of x. If $P N(x, X)=\emptyset$, then x is said to be redundant in X. A set X containing no redundant vertex is called irredundant. The irredundance number $\operatorname{ir}(G)$ is the minimum cardinality taken over all maximal irredundant sets of G, and the upper irredundance number $I R(G)$ is the maximum cardinality of a (maximal) irredundant set of G. An $i r$-set X of G is a maximal irredundant set of cardinality $\operatorname{ir}(G)$. A γ-set, an i-set, a β_{0}-set, a Γ-set and an $I R$-set are defined analogously.

The following relationship among the parameters under consideration is well-known [2, 3]:

$$
\operatorname{ir}(G) \leq \gamma(G) \leq i(G) \leq \beta_{0}(G) \leq \Gamma(G) \leq I R(G)
$$

The above and related parameters for regular graphs were investigated by many authors [1],[4]-[17]. For example, Cockayne and Mynhardt [4] and independently Rautenbach [15] disproved the Henning-Slater conjecture [12] that $\Gamma(G)=I R(G)$ for any cubic graph G, while the Barefoot-Harary-Jones conjecture on the difference between the domination and independent domination numbers of cubic graphs was investigated in [5, 13, 14, 17].

In this paper, we deal with the next problem:
Problem 1 ([9]) Does there exist a cubic graph for which ir $<\gamma<i<\beta_{0}<\Gamma<I R$?
We define the graph $W_{k}(k \geq 0)$ as follows. Take a disjunct union of the graphs

$$
F_{1} \cong F_{2} \cong \ldots \cong F_{2 k+8}, G_{1} \cong G_{2} \cong \ldots \cong G_{2 k+6}, H_{1} \cong H_{2} \cong \ldots \cong H_{3 k+6},
$$

where F_{i}, G_{i} and H_{i} are shown in Figure 1, and add the edges

$$
\begin{aligned}
& \left\{f_{i}^{\prime} f_{i+1}: 1 \leq i \leq 2 k+7\right\}, f_{2 k+8}^{\prime} g_{1}, \\
& \left\{g_{i}^{\prime} g_{i+1}: 1 \leq i \leq 2 k+5\right\}, g_{2 k+6}^{\prime} h_{1}, \\
& \left\{h_{i}^{\prime} h_{i+1}: 1 \leq i \leq 3 k+5\right\}, h_{3 k+6}^{\prime} f_{1} .
\end{aligned}
$$

Theorem 1 For any nonnegative integers $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ there exists an integer k such that the cubic graph W_{k} satisfies the following conditions: $\gamma\left(W_{k}\right)-i r\left(W_{k}\right) \geq k_{1}, i\left(W_{k}\right)-$ $\gamma\left(W_{k}\right) \geq k_{2}, \beta_{0}\left(W_{k}\right)-i\left(W_{k}\right) \geq k_{3}, \Gamma\left(W_{k}\right)-\beta_{0}\left(W_{k}\right) \geq k_{4}$, and $\operatorname{IR}\left(W_{k}\right)-\Gamma\left(W_{k}\right) \geq k_{5}$.

It follows from Lemmas 1-5 of Section 2 that the graph W_{0} has the property

$$
\text { ir }<\gamma<i<\beta_{0}<\Gamma<I R,
$$

thus solving Problem 1.
We conclude this section with the next conjecture.
Conjecture 1 For any integers $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ there exists a 3-connected cubic graph G satisfying the following conditions: $\gamma(G)-i r(G) \geq k_{1}, i(G)-\gamma(G) \geq k_{2}, \beta_{0}(G)-i(G) \geq k_{3}$, $\Gamma(G)-\beta_{0}(G) \geq k_{4}$, and $\operatorname{IR}(G)-\Gamma(G) \geq k_{5}$.

Figure 1. Graphs F_{i}, G_{i}, and H_{i}.

2 Proof of Theorem 1

The proof of Theorem 1 is based on five lemmas. Let us denote by F, G and H the graphs induced by the sets $\cup_{i=1}^{2 k+8} V\left(F_{i}\right), \cup_{i=1}^{2 k+6} V\left(G_{i}\right)$, and $\cup_{i=1}^{3 k+6} V\left(H_{i}\right)$, respectively.

Lemma $1 \gamma\left(W_{k}\right)-i r\left(W_{k}\right) \geq k+1$.
Proof: Let D denote a γ-set of W_{k}. It is straightforward to check that $\left|D \cap V\left(G_{i}\right)\right|=4$ whenever both g_{i} and g_{i}^{\prime} are dominated by $D-V\left(G_{i}\right)$, and $\left|D \cap V\left(G_{i}\right)\right|=5$ otherwise. Moreover, if $\left|D \cap V\left(G_{i}\right)\right|=4$, then $g_{i}, g_{i}^{\prime} \notin D$. Thus, the number of components G_{i} satisfying $\left|D \cap V\left(G_{i}\right)\right|=4$ is at most $k+3$. We obtain

$$
|D \cap V(G)| \geq 4(k+3)+5(k+3)=9 k+27 .
$$

Consider the set $J=(D-V(G)) \cup R$, where

$$
R=\left\{N\left(g_{i}\right) \cap V\left(G_{i}\right), N\left(g_{i}^{\prime}\right) \cap V\left(G_{i}\right): 1 \leq i \leq 2 k+6\right\}
$$

We have

$$
|R|=8 k+24
$$

Let us construct a maximal irredundant set of W_{k}. We first put $J^{\prime}=J$. Further, if $N\left[h_{1}\right] \cap J=\emptyset$, then we put $g_{2 k+6}^{\prime} \in J^{\prime}$. If $N\left[f_{2 k+8}^{\prime}\right] \cap J=\emptyset$, then we put $g_{1} \in J^{\prime}$. If $h_{1} \in D$ and $P N\left(h_{1}, D\right)=g_{2 k+6}^{\prime}$, then we put $h_{1} \notin J^{\prime}$. Finally, if $f_{2 k+8}^{\prime} \in D$ and $P N\left(f_{2 k+8}^{\prime}, D\right)=g_{1}$, then we put $f_{2 k+8}^{\prime} \notin J^{\prime}$. It is easy to see that the set J^{\prime} is a maximal irredundant set, and $\left|J^{\prime}\right| \leq|J|+2$. We obtain

$$
\gamma\left(W_{k}\right)-i r\left(W_{k}\right) \geq|D|-\left|J^{\prime}\right| \geq|D|-|J|-2=|D \cap V(G)|-|R|-2 \geq k+1
$$

Lemma $2 i\left(W_{k}\right)-\gamma\left(W_{k}\right) \geq k+1$.
Proof: We denote by I an i-set of W_{k}.
Claim 1 We have $\left|I \cap V\left(H_{i}\right)\right|=3$ or 4 for any $i, 1 \leq i \leq 3 k+6$. Moreover, $\left|I \cap V\left(H_{i}\right)\right|=3$ if and only if either h_{i} or h_{i}^{\prime} is dominated by $I-V\left(H_{i}\right)$, and additionally $h_{i}, h_{i}^{\prime} \notin I$.

Proof: Assume that $h_{i}, h_{i}^{\prime} \in I$ for some $i, 1 \leq i \leq 3 k+6$. We obtain $\left|I \cap V\left(H_{i}\right)\right|=4$. Suppose now that exactly one vertex from h_{i}, h_{i}^{\prime} belongs to I, say $h_{i} \in I$ and $h_{i}^{\prime} \notin I$. If $b_{i}, c_{i} \notin I$, then these vertices cannot be dominated by an independent set, a contradiction. Therefore, without loss of generality, $b_{i} \in I$ and $c_{i} \notin I$. Hence $a_{i}^{\prime} \in I$, and either $c_{i}^{\prime} \in I$ or $d_{i}^{\prime} \in I$. We have $\left|I \cap V\left(H_{i}\right)\right|=4$. Consider the case $h_{i}, h_{i}^{\prime} \notin I$. Since $I \cap\left\{b_{i}, b_{i}^{\prime}, c_{i}, c_{i}^{\prime}\right\} \neq \emptyset$, we may assume without loss of generality that $b_{i} \in I$ and hence $a_{i}^{\prime} \in I$. If $c_{i}^{\prime} \in I$, then $d_{i} \in I$ and $\left|I \cap V\left(H_{i}\right)\right|=4$. If $c_{i}^{\prime} \notin I$, then $d_{i}^{\prime} \in I$ and $\left|I \cap V\left(H_{i}\right)\right|=3$.

By Claim 1, the number of components H_{i} satisfying $\left|I \cap V\left(H_{i}\right)\right|=3$ is at most $2 k+4$. Therefore,

$$
|I \cap V(H)| \geq 10 k+20
$$

Let us consider the set $D=\left\{h_{3 k+6}^{\prime}, h_{i}, b_{i}^{\prime}, c_{i}^{\prime}: i=1,2, \ldots, 3 k+6\right\}$. It is evident that the set $J=(I-V(H)) \cup D$ is a dominating set of W_{k} and

$$
i\left(W_{k}\right)-\gamma\left(W_{k}\right) \geq|I|-|J|=|I \cap V(H)|-|D| \geq 10 k+20-9 k-19=k+1
$$

Now we estimate the difference between the independence and independent domination numbers of W_{k}.

Lemma $3 \beta_{0}\left(W_{k}\right)-i\left(W_{k}\right) \geq 2 k+4$.

Proof: It is easy to construct a maximal independent set I of W_{k} such that $\left|I \cap V\left(F_{i}\right)\right|=6$, $\left|I \cap V\left(G_{i}\right)\right|=6$, and $\left|I \cap V\left(H_{i}\right)\right|=4$. We define the set $R \subset V(H)$ as follows. For each $i \in\{1,2, \ldots, 3 k+6\}$, we put $a_{i}, d_{i}, b_{i}^{\prime} \in R$ if $i=1(\bmod 3), h_{i}, h_{i}^{\prime}, b_{i}^{\prime}, c_{i} \in R$ if $i=2(\bmod$ $3)$, and $a_{i}^{\prime}, b_{i}, d_{i}^{\prime} \in R$ if $i=0(\bmod 3)$. Now, the set $J=(I-V(H)) \cup R$ is an independent dominating set and hence $i\left(W_{k}\right) \leq|J|$. We obtain

$$
\beta_{0}\left(W_{k}\right)-i\left(W_{k}\right) \geq|I|-|J|=|I \cap V(H)|-|R|=12 k+24-10 k-20=2 k+4 .
$$

Lemma $4 \Gamma\left(W_{k}\right)-\beta_{0}\left(W_{k}\right) \geq 3 k+5$.
Proof: We can split $V\left(F_{i}\right)$ into three cycles C_{3} and one $C_{7}, V\left(G_{i}\right)$ into two cycles C_{5} and two cycles C_{3}, and $V\left(H_{i}\right)$ into two cycles C_{5}. Therefore,

$$
\beta_{0}\left(W_{k}\right) \leq 6(2 k+8)+6(2 k+6)+4(3 k+6)=36 k+108 .
$$

It is easy to construct a maximal independent set I of W_{k} such that $\left|I \cap V\left(F_{i}\right)\right|=6$, $\left|I \cap V\left(G_{i}\right)\right|=6$ and $g_{2 k+6}^{\prime} \in I$, and $\left|I \cap V\left(H_{i}\right)\right|=4$. Thus, $|I|=36 k+108$ and hence $\beta_{0}\left(W_{k}\right)=|I|$.

Consider the set $S=\left\{h_{i}^{\prime}, a_{i}^{\prime}, b_{i}^{\prime}, c_{i}^{\prime}, d_{i}^{\prime}: \quad 1 \leq i \leq 3 k+6\right\}-\left\{h_{3 k+6}^{\prime}\right\}$. It is evident that $R=(I-V(H)) \cup S$ is a minimal dominating set. We have

$$
\Gamma\left(W_{k}\right)-\beta_{0}\left(W_{k}\right) \geq|R|-|I|=|S|-|I \cap V(H)|=15 k+29-12 k-24=3 k+5 .
$$

Denote by D a Γ-set of W_{k}.
Proposition $1|D \cap V(F)| \leq 13 k+53$.
Proof: Let us label the vertices of F_{i} as shown in Figure 2, and put $X=\{x, a, b, h, i, j\}$.

Figure 2.

Claim $2|D \cap X|=2$. Moreover, $f, e, m \notin D$ if $c, d \in D$ and at least one of the vertices k, k^{\prime}, p belongs to D.

Proof: Since $\{a, b, h, i\}$ is dominated by $D \cap X$ and at least two vertices are required to dominate it, $|D \cap X| \geq 2$. Suppose $|D \cap X| \geq 3$. If $|D \cap\{a, b, x\}| \geq 2$, then without loss of generality $a \in D$ and $P N(a)=\{h\}$. Thus $h, i, j \notin D$, so $x \in D$ and $P N(x)=\{d\}$, whence $c \notin D$. Hence j is not dominated, a contradiction. A similar contradiction shows that $|D \cap\{h, i, j\}| \geq 2$ is impossible. Therefore $|D \cap X|=2$.

Suppose that $c, d \in D$ and at least one of the vertices k, k^{\prime}, p belongs to D. We have $\{x\}=P N(d)$ and hence $a, b, x \notin D$. Therefore $h, i \in D$ and $P N(c)=\{e\}$. Hence $m, e, f \notin D$.

We define 16 types for the component F_{i} as follows:
F_{i} has type A1 if $k^{\prime}, g^{\prime} \in D$ and $k \in P N\left(k^{\prime}\right), g \in P N\left(g^{\prime}\right)$;
F_{i} has type A2 if $k^{\prime}, g^{\prime} \in D$ and $k \notin P N\left(k^{\prime}\right), g \in P N\left(g^{\prime}\right) ;$
F_{i} has type A3 if $k^{\prime}, g^{\prime} \in D$ and $k \in P N\left(k^{\prime}\right), g \notin P N\left(g^{\prime}\right) ;$
F_{i} has type A4 if $k^{\prime}, g^{\prime} \in D$ and $k \notin P N\left(k^{\prime}\right), g \notin P N\left(g^{\prime}\right) ;$
F_{i} has type B1 if $k^{\prime} \in D, g^{\prime} \notin D$ and $k \in P N\left(k^{\prime}\right), g^{\prime} \in N\left(D-V\left(F_{i}\right)\right)$;
F_{i} has type B2 if $k^{\prime} \in D, g^{\prime} \notin D$ and $k \notin P N\left(k^{\prime}\right), g^{\prime} \in N\left(D-V\left(F_{i}\right)\right)$;
F_{i} has type B3 if $k^{\prime} \in D, g^{\prime} \notin D$ and $k \in P N\left(k^{\prime}\right), g^{\prime} \in P N(g)$;
F_{i} has type B4 if $k^{\prime} \in D, g^{\prime} \notin D$ and $k \notin P N\left(k^{\prime}\right), g^{\prime} \in P N(g)$;
F_{i} has type C1 if $k^{\prime} \notin D, g^{\prime} \in D$ and $k^{\prime} \in N\left(D-V\left(F_{i}\right)\right), g \in P N\left(g^{\prime}\right)$;
F_{i} has type C2 if $k^{\prime} \notin D, g^{\prime} \in D$ and $k^{\prime} \in N\left(D-V\left(F_{i}\right)\right), g \notin P N\left(g^{\prime}\right)$;
F_{i} has type C3 if $k^{\prime} \notin D, g^{\prime} \in D$ and $k^{\prime} \in P N(k), g \notin P N\left(g^{\prime}\right)$;
F_{i} has type C4 if $k^{\prime} \notin D, g^{\prime} \in D$ and $k^{\prime} \in P N(k), g \in P N\left(g^{\prime}\right)$;
F_{i} has type D1 if $k^{\prime}, g^{\prime} \notin D$ and $k^{\prime} \in N\left(D-V\left(F_{i}\right)\right), g^{\prime} \in N\left(D-V\left(F_{i}\right)\right)$;
F_{i} has type D2 if $k^{\prime}, g^{\prime} \notin D$ and $k^{\prime} \in P N(k), g^{\prime} \in N\left(D-V\left(F_{i}\right)\right)$;
F_{i} has type D3 if $k^{\prime}, g^{\prime} \notin D$ and $k^{\prime} \in N\left(D-V\left(F_{i}\right)\right), g^{\prime} \in P N(g)$;
F_{i} has type D4 if $k^{\prime}, g^{\prime} \notin D$ and $k^{\prime} \in P N(k), g^{\prime} \in P N(g)$.
Let us denote $D_{i}=D \cap V\left(F_{i}\right)$.
Claim 3 We have
(a1) $\left|D_{i}\right|=5$ if F_{i} is of type $A 1$;
(a2) $\left|D_{i}\right|=6$ if F_{i} is of type A2;
(аз) $\left|D_{i}\right|=5$ if F_{i} is of type $A 3$;
(a4) $\left|D_{i}\right|=6$ if F_{i} is of type A4;
(b1) $\left|D_{i}\right|=5$ if F_{i} is of type B1;
(b2) $\left|D_{i}\right|=6$ if F_{i} is of type B2;
(b3) $\left|D_{i}\right|=5$ if F_{i} is of type B3;
(b4) $\left|D_{i}\right|=7$ if F_{i} is of type B_{4};
(c1) $\left|D_{i}\right|=6$ if F_{i} is of type C1;
(c2) $\left|D_{i}\right|=6$ if F_{i} is of type C2;
(c3) $\left|D_{i}\right|=7$ if F_{i} is of type C3;
(c4) $\left|D_{i}\right|=6$ if F_{i} is of type C4;
(d1) $\left|D_{i}\right|=6$ if F_{i} is of type D1;
(d2) $\left|D_{i}\right|=7$ if F_{i} is of type D2;
(d3) $\left|D_{i}\right|=7$ if F_{i} is of type D3;
(d4) $\left|D_{i}\right|=8$ if F_{i} is of type D_{4}.
Proof: In what follows we will use the first part of Claim 2 without further reference.
(a1) Since $k \in P N\left(k^{\prime}\right)$ and $g \in P N\left(g^{\prime}\right)$, we have $d, k, p, g, f \notin D$. Also, $y \in D$, for otherwise p is not dominated. Suppose that $e \in D$. We have $m, n \notin D$. Now we can use the vertex c and two vertices of X to construct D_{i} such that $\left|D_{i}\right|=5$. Assume that $e \notin D$. We obtain $n \in D$. It is easy to see that exactly one of the vertices c, m belongs to D and hence $\left|D_{i}\right|=5$.
(a2) We have $p, g, f \notin D$. If $c \notin D$, then $\left|D_{i}-X\right|=4$ and hence $\left|D_{i}\right|=6$. Suppose that $c \in D$. If $d \in D$, then $m, e \notin D$ by Claim 2. Hence $n \in D$ and $\left|D_{i}\right|=6$. If $d \notin D$, then again $\left|D_{i}\right|=6$.
(a3) We have $d, k, p \notin D$. If $c \notin D$, then $\left|D_{i}-X\right|=3$ and hence $\left|D_{i}\right|=5$. Consider the case $c \in D$. If $y \in D$, then $\left|D_{i}\right|=5$. If $y \notin D$, then $g \in D$, for otherwise p is not dominated. To dominate y we must take either m or n and hence $\left|D_{i}\right|=5$.
(a4) Assume that $c, d \notin D$. It is not difficult to see that $\left|D_{i}-X\right|=4$ and hence $\left|D_{i}\right|=6$. Consider the case $c \notin D$ and $d \in D$. If $k \in D$, then $\{p\}=P N(k)$ and hence $g, p, y \notin D$. We have $\left|D_{i}\right|=6$. If $k \notin D$, then one can easily check that again $\left|D_{i}\right|=6$. The case $c \in D$ and $d \notin D$ is analogous. Finally, suppose that $c, d \in D$. By Claim 2, $e, f, m \notin D$. If $k \in D$, then $\{p\}=P N(k)$. Therefore, $y, p, g \notin D, n \in D$ and $\left|D_{i}\right|=6$. If $k \notin D$, then exactly two vertices from $\{n, y, p, g\}$ belong to D and $\left|D_{i}\right|=6$.
(b1) We have $d, k, p \notin D$. Suppose that $c \notin D$. If $y \in D$, then $\left|D_{i}-X\right|=3$ and hence $\left|D_{i}\right|=5$. If $y \notin D$, then $g \in D$ to dominate p. Again, $\left|D_{i}-X\right|=3$ and $\left|D_{i}\right|=5$. Consider the case $c \in D$. If $y \in D$, then $f \in D$ or $g \in D$, for otherwise g is not dominated. We have $\left|D_{i}\right|=5$. If $y \notin D$, then $g \in D$, for otherwise p is not dominated. Also, one of the vertices m, n belongs to D to dominate y. We obtain $\left|D_{i}\right|=5$.
(b2) Suppose that $c, d \notin D$. It is not difficult to see that $\left|D_{i}-X\right|=4$ and hence $\left|D_{i}\right|=6$. Consider the case $|D \cap\{c, d\}|=1$. If $k \in D$, then $\{p\}=P N(k)$ and hence $g, p, y \notin D$. We have $\left|D_{i}\right|=6$. If $k \notin D$, then one can easily check that again $\left|D_{i}\right|=6$. Finally, assume that $c, d \in D$. By Claim 2, $f, e, m \notin D$. If $k \in D$, then $P N(k)=\{p\}$ and hence $g, p, y \notin D$. Now g is not dominated, a contradiction. If $k \notin D$, then $\left|D_{i}\right|=6$.
(b3) We have $d, k, p \notin D$ and $g \in D$. Suppose that $c \notin D$. If $y \in D$, then $f, m \notin D$, $e \in D$ and hence $\left|D_{i}\right|=5$. If $y \notin D$, then again $\left|D_{i}\right|=5$. Consider the case $c \in D$. To dominate y, exactly one of the vertices m, n, y belongs to D. Hence $\left|D_{i}\right|=5$.
(b4) We have $g \in D$. Suppose that $c, d \notin D$. It is not difficult to see that $\left|D_{i}-X\right|=5$ and hence $\left|D_{i}\right|=7$. Consider the case $|D \cap\{c, d\}|=1$. If $k \in D$, then $P N(k)=\emptyset$, a contradiction. Therefore, $k \notin D$. It is easy to see that $\left|D_{i}\right|=7$. Finally, assume that $c, d \in D$. By Claim 2, $f, e, m \notin D$. If $k \in D$, then $P N(k)=\emptyset$, a contradiction. Therefore, $k \notin D$. We obtain $\left|D_{i}\right|=6$. Since D is a maximum minimal dominating set, we conclude that $\left|D_{i}\right|=7$.
(c1) We have $f, g, p \notin D$. Suppose that $k \notin D$. We obtain $y \in D$ to dominate p, and $d \in D$ to dominate k. Therefore, $\left|D_{i}\right|=6$. Consider the case $k \in D$. If $c, d \notin D$, then $\left|D_{i}\right|=5$. If exactly one vertex from $\{c, d\}$ is present in D, then it is checked directly that $\left|D_{i}\right|=6$. Finally, suppose that $c, d \in D$. By Claim 2 , $e, m \notin D$. We have $\left|D_{i}\right|=6$. Since D is a maximum minimal dominating set, we conclude that $\left|D_{i}\right|=6$.
(c2) Assume that $c, d \notin D$. It is not difficult to see that $\left|D_{i}-X\right|=4$ and hence $\left|D_{i}\right|=6$. Consider the case $c \notin D$ and $d \in D$. If $k \in D$, then $\{p\}=P N(k)$ and hence
$g, p, y \notin D$. We have $\left|D_{i}\right|=6$. If $k \notin D$, then one can easily check that again $\left|D_{i}\right|=6$. Consider the case $c \in D$ and $d \notin D$. If $k \notin D$, then $p \in D$ to dominate k. We obtain $\left|D_{i}\right|=6$. If $k \in D$, then $p \notin D$, for otherwise $P N(k)=\emptyset$. It is easy to see that $\left|D_{i}\right|=6$. Finally, suppose that $c, d \in D$ and consider two cases.

Case 1. $k \in D$. By Claim 2, e, $f, m \notin D$. Further, $\{p\}=P N(k)$. Therefore, $g, p, y \notin D, n \in D$ and $\left|D_{i}\right|=6$.

Case 2. $k \notin D$. Suppose that $p \in D$. By Claim 2, $e, f, m \notin D$. Also, $y \notin D$, for otherwise $P N(p)=\emptyset$. We obtain $n \in D$ and $\left|D_{i}\right|=6$. Assume now that $p \notin D$. If $y \in D$, then $\left|D_{i}\right|=6$. If $y \notin D$, then $g \in D$ to dominate p. Moreover, exactly one vertex from $\{m, n\}$ belongs to D. Thus, $\left|D_{i}\right|=6$.
(c3) We have $k \in D$. Suppose that $c, d \in D$. By Claim 2, $f, e, m \notin D$. We see that $\left|D_{i}\right|=7$. Consider the case $|D \cap\{c, d\}|=1$. It is checked directly that $\left|D_{i}\right|=7$. If $c, d \notin D$, then $\left|D_{i}\right|=6$. Since D is a maximum minimal dominating set, we conclude that $\left|D_{i}\right|=7$.
(c4) We have $f, g, p \notin D$. Suppose that $c \notin D$. It is checked directly that $\left|D_{i}\right|=6$. Consider the case $c \in D$. If $d \notin D$, then $\left|D_{i}\right|=6$. If $d \in D$, then $e, m \notin D$ by Claim 2 . Again, $\left|D_{i}\right|=6$.
(d1) Assume that $c, d \notin D$. If $k \notin D$, then $p \in D$ and $\left|D_{i}\right|=5$. If $k \in D$, then it is not difficult to see that $\left|D_{i}-X\right|=4$ and hence $\left|D_{i}\right|=6$. Consider the case $c \notin D$ and $d \in D$. If $k \in D$, then $\{p\}=P N(k)$ and hence $g, p, y \notin D$. We have $\left|D_{i}\right|=6$. If $k \notin D$, then one can easily check that again $\left|D_{i}\right|=6$. Consider the case $c \in D$ and $d \notin D$. If $k \notin D$, then $p \in D$ and $\left|D_{i}\right|=6$. If $k \in D$, then $p \notin D$, for otherwise $P N(k)=\emptyset$. It is easy to see that $\left|D_{i}\right|=6$. Finally, suppose that $c, d \in D$. By Claim 2, $e, f, m \notin D$. If $k \in D$, then $\{p\}=P N(k)$. Therefore, $y, p, g \notin D, n \in D$ and $\left|D_{i}\right|=6$. If $k \notin D$, then exactly two vertices from $\{n, y, p, g\}$ belong to D and $\left|D_{i}\right|=6$. Since D is a maximum minimal dominating set, we conclude that $\left|D_{i}\right|=6$.
(d2) The proof is analogous to the case (c3).
(d3) We have $g \in D$. The only difference between this case and the case (b4) is that the vertex k is dominated by k^{\prime} in the latter case. Hence, if $d \in D$ or $k \in D$, then we use the corresponding reasoning of the case (b4) and obtain $\left|D_{i}\right|=7$. Suppose now that $d, k \notin D$. We have $p \in D$, for otherwise k is not dominated. Obviously $c, e, f \in D$ and $\left|D_{i}\right|=7$.
(d4) We have $k, g \in D$. Suppose that $c, d \notin D$. It is not difficult to see that $D_{i}-X=$ $\{k, e, f, g, p\}$. Hence $\left|D_{i}\right|=7$. If $|D \cap\{c, d\}|=1$, then $\left|D_{i}\right|=8$. Finally, assume that $c, d \in D$. By Claim 2, $f, e, m \notin D$ and hence $\left|D_{i}\right|=7$. Since D is a maximum minimal dominating set, we conclude that $\left|D_{i}\right|=8$.

Claim 4 If $F_{i}(2 \leq i \leq 2 k+7)$ has type D4, then both (i) and (ii) hold; if F_{i} has type D4 and $i=2 k+8$, then (i) holds. Furthermore, if $F_{i}(2 \leq i \leq 2 k+7)$ is of type B4, C3, D2 or D3, then at least one of the properties (i) and (ii) holds.
(i) F_{i-1} has type A1, A2, C1 or C4 and $\left|D_{i-1}\right| \leq 6$.
(ii) F_{i+1} has type $A 1, A 3, B 1$ or $B 3$ and $\left|D_{i+1}\right|=5$.

Proof: This follows immediately from the definition and Claim 3.
Let F_{i} be a component of type D4 for some $i \leq 2 k+7$. By Claim 3, $\left|D_{i}\right|=8$. By Claim $4, F_{i+1}$ has type A1, A3, B1 or B3 and $\left|D_{i+1}\right|=5$. We denote by m the number of such
pairs. These components contain exactly $13 m$ vertices of D, and any other component F_{j} with $j \leq 2 k+7$ has $\left|D_{j}\right| \leq 7$. Suppose that there exist three sequential components F_{i}, F_{i+1}, F_{i+2} such that $\left|D_{i}\right|=\left|D_{i+1}\right|=\left|D_{i+2}\right|=7$, i.e., they are of type B4, C3, D2 or D3 by Claim 3. Applying Claim 4 to F_{i+1} we arrive at a contradiction. Consider two components F_{i}, F_{i+1} of type B4, C3, D2 or D3 such that $i \leq 2 k+6$. We have $\left|D_{i}\right|=\left|D_{i+1}\right|=7$. Applying Claim 4 to F_{i+1}, we obtain $\left|D_{i+2}\right|=5$ for the component F_{i+2}. Denote by n the number of such triples. We see that these triples contain $19 n$ vertices of D.

Suppose that the component $F_{2 k+8}$ belongs to one of the above pairs or triples, and consider a maximal sequence

$$
F_{i+1}, F_{i+2}, \ldots, F_{i+r}
$$

not containing the components from the above pairs and triples. It is obvious that either $\left|D_{i+r+1}\right|=8$ or $\left|D_{i+r+1}\right|=\left|D_{i+r+2}\right|=7$. In the first case we know that F_{i+r+1} is of type D4 and $\left|D_{i+r}\right| \leq 6$ by Claim 4. For the latter case we know that F_{i+r+1} must have type B4, C3, D2 or D3. Hence, by Claim $4,\left|D_{i+r}\right| \leq 6$. Thus,

$$
\sum_{j=1}^{r}\left|D_{i+j}\right| \leq 6.5 r .
$$

Taking into account all such maximal sequences, we obtain

$$
|D \cap V(F)| \leq 13 m+19 n+6.5(2 k+8-2 m-3 n)=13 k+52-0.5 n \leq 13 k+52 .
$$

Assume now that the component $F_{2 k+8}$ does not belong to any of the above pairs or triples, and denote by L a maximal sequence

$$
F_{l+1}, F_{l+2}, \ldots, F_{2 k+8}
$$

not containing the components from those pairs and triples. If $\left|D_{2 k+8}\right|=8$, then $\left|D_{2 k+7}\right|=$ 6 by Claim 4 . We have

$$
\sum_{j=1}^{2 k+8-l}\left|D_{l+j}\right| \leq 6.5(2 k+8-l)+1.5=6.5|L|+1.5
$$

If $\left|D_{2 k+8}\right|=7$, then it is not difficult to see that

$$
\sum_{j=1}^{2 k+8-l}\left|D_{l+j}\right| \leq 6.5(2 k+8-l)+1=6.5|L|+1 .
$$

We have already proved that if $F_{i+1}, F_{i+2}, \ldots, F_{i+r}(i+r<2 k+8)$ is a maximal sequence not containing the components of the pairs and triples, then

$$
\sum_{j=1}^{r}\left|D_{i+j}\right| \leq 6.5 r .
$$

Taking into account all such maximal sequences and L, we obtain

$$
|D \cap V(F)| \leq 13 m+19 n+6.5(2 k+8-2 m-3 n-|L|)+6.5|L|+1.5=
$$

$$
13 k+53.5-0.5 n \leq 13 k+53.5
$$

Thus,

$$
|D \cap V(F)| \leq 13 k+53,
$$

as required. The proof of Proposition 1 is complete.

Lemma $5 \operatorname{IR}\left(W_{k}\right)-\Gamma\left(W_{k}\right) \geq k+1$.
Proof: Since D is a Γ-set, it follows that D is maximal irredundant. Adding to $D-V(F)$ some new vertices, we will construct a set D^{\prime} which is maximal irredundant and

$$
\left|D^{\prime} \cap V(F)\right| \geq 14 k+54
$$

We first put $D^{\prime}=D-V(F)$. Taking into account the definition of the 16 types of the component F_{1}, we consider 4 cases. Suppose that $k^{\prime} \in D$ and $k \in P N\left(k^{\prime}, D\right)$. In this case, we put $a, b, x, m, n, y \in D^{\prime}$. We do the same if $k^{\prime} \in D$ and $k \notin P N\left(k^{\prime}, D\right)$. Assume that $k^{\prime} \notin D$ and $k^{\prime} \in N\left(D-V\left(F_{1}\right)\right)$, say k^{\prime} is adjacent to $k^{\prime \prime}$. Now, we put $a, b, x, m, n, y \in D^{\prime}$ if $\left\{k^{\prime}\right\}=P N\left(k^{\prime \prime}, D\right)$, and we put $h, i, j, k, m, n, p \in D^{\prime}$ otherwise. Finally, suppose that $k^{\prime} \notin D$ and $k^{\prime} \in P N(k, D)$. We put $h, i, j, k, m, n, p \in D^{\prime}$.

Let us consider the component $F_{2 k+8}$. Suppose that $g^{\prime} \in D$ and $g \in P N\left(g^{\prime}, D\right)$. We put $a, b, x, m, n, y \in D^{\prime}$. Assume that $g^{\prime} \in D$ but $g \notin P N\left(g^{\prime}, D\right)$. We put $a, b, x, m, n, y \in D^{\prime}$. Consider now the case $g^{\prime} \notin D$ and $g^{\prime} \in N(D-V(F))$, say g^{\prime} is adjacent to $g^{\prime \prime}$. We put $a, b, x, m, n, y \in D^{\prime}$ if $\left\{g^{\prime}\right\}=P N\left(g^{\prime \prime}, D\right)$, and we put $a, b, c, d, e, f, g \in D^{\prime}$ otherwise. Finally, suppose that $g^{\prime} \notin D$ and $g^{\prime} \in P N(g, D)$. We put $a, b, c, d, e, f, g \in D^{\prime}$.

For $2 \leq i \leq 2 k+7$, we put $a, b, c, d, e, f, g \in D^{\prime}$ if i is even, and $h, i, j, k, m, n, p \in D^{\prime}$ if i is odd. It is easy to see that the resulting set D^{\prime} is a maximal irredundant set and $\left|D^{\prime} \cap V(F)\right| \geq 14 k+54$. Applying Proposition 1 , we obtain
$I R\left(W_{k}\right)-\Gamma\left(W_{k}\right) \geq\left|D^{\prime}\right|-|D|=\left|D^{\prime} \cap V(F)\right|-|D \cap V(F)| \geq 14 k+54-13 k-53=k+1$.

Using Lemmas 1-5 we can easily choose the integer k such that the conditions of Theorem 1 are satisfied. The proof of Theorem 1 is complete.

Acknowledgment The authors thank the referee for valuable comments and suggestions.

References

[1] C. Barefoot, F. Harary and K.F. Jones, What is the difference between the domination and independent domination numbers of a cubic graph? Graphs and Combin. 7 (1991) 205-208.
[2] E.J. Cockayne, O. Favaron, C. Payan and A.G. Thomason, Contributions to the theory of domination, independence and irredundance in graphs. Discrete Math. 33 (1981) 249-258.
[3] E.J. Cockayne and C.M. Mynhardt, The sequence of upper and lower domination, independence and irredundance numbers of a graph. Discrete Math. 122 (1993) 89102.
[4] E.J. Cockayne and C.M. Mynhardt, Domination and irredundance in cubic graphs. Discrete Math. 167/168 (1997) 205-214.
[5] E.J. Cockayne and C.M. Mynhardt, Independence and domination in 3-connected cubic graphs. JCMCC 10 (1991) 173-182.
[6] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and A.A. McRae, Minus domination in regular graphs. Discrete Math. 49 (1996) 311-312.
[7] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and P.J. Slater, Signed domination in graphs. Graph Theory, Combinatorics, and Applications, John Wiley \& Sons, Inc. 1 (1995) 311-322.
[8] O. Favaron, Signed domination in regular graphs. Discrete Math. 158 (1996) 287-293.
[9] M.A. Henning, Domination functions in graphs. In Domination in Graphs: Advanced Topics, T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Marcel Dekker, Inc., New York, 1998, 31-57.
[10] M.A. Henning, Domination in regular graphs. Ars Combin. 43 (1996) 263-271.
[11] M.A. Henning and G. Kubicki, Real domination in graphs. J. Combin. Math. Combin. Comput. 26 (1998) 147-160.
[12] M.A. Henning and P.J. Slater, Inequalities relating domination parameters in cubic graphs. Discrete Math. 158 (1996) 87-98.
[13] A.V. Kostochka, The independent domination number of a cubic 3-connected graph can be much larger than its domination number. Graphs Combin. 9 (1993) 235-237.
[14] C.M. Mynhardt, On the difference between the domination and independent domination numbers of cubic graphs. Theory of Graphs and Applications, New York: Wiley, 1991, 939-947.
[15] D. Rautenbach, On the differences between the upper irredundance, upper domination and independence numbers of a graph. Discrete Math. 203 (1999) 239-252.
[16] B. Zelinka, Some remarks on domination in cubic graphs. Discrete Math. 158 (1996) 249-255.
[17] I.E. Zverovich and V.E. Zverovich, Disproof of a conjecture in the domination theory. Graphs Combin. 10 (1994) 389-396.

[^0]: *Supported by the INTAS and the Belarus Government (Project INTAS-BELARUS 97-0093).
 ${ }^{\dagger}$ Supported by RUTCOR.

