Radhika Desikan
Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis
Desikan, Radhika; Last, Kathryn; Harrett-Williams, Rhian; Tagliavia, Cecilia; Harter, Klaus; Hooley, Richard; Hancock, John T.; Neill, Steven
Authors
Kathryn Last
Rhian Harrett-Williams
Cecilia Tagliavia
Klaus Harter
Richard Hooley
John Hancock John.Hancock@uwe.ac.uk
Professor in Cell Signalling
Steven Neill
Abstract
Ethylene is a plant hormone that regulates many aspects of growth and development. Despite the well-known association between ethylene and stress signalling, its effects on stomatal movements are largely unexplored. Here, genetic and physiological data are provided that position ethylene into the Arabidopsis guard cell signalling network, and demonstrate a functional link between ethylene and hydrogen peroxide (H2O2). In wild-type leaves, ethylene induces stomatal closure that is dependent on H 2O2 production in guard cells, generated by the nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase AtrbohF. Ethylene-induced closure is inhibited by the ethylene antagonists 1-MCP and silver. The ethylene receptor mutants etr1-1 and etr1-3 are insensitive to ethylene in terms of stomatal closure and H2O2 production. Stomata of the ethylene signalling ein2-1 and arr2 mutants do not close in response to either ethylene or H2O2 but do generate H 2O2 following ethylene challenge. Thus, the data indicate that ethylene and H2O2 signalling in guard cells are mediated by ETR1 via EIN2 and ARR2-dependent pathway(s), and identify AtrbohF as a key mediator of stomatal responses to ethylene. © 2006 The Authors.
Journal Article Type | Article |
---|---|
Publication Date | Sep 1, 2006 |
Journal | Plant Journal |
Print ISSN | 0960-7412 |
Electronic ISSN | 1365-313X |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 47 |
Issue | 6 |
Pages | 907-916 |
DOI | https://doi.org/10.1111/j.1365-313X.2006.02842.x |
Keywords | abscisic acid, Atrboh, ethylene, H2O2, guard cells, signalling, stomata |
Public URL | https://uwe-repository.worktribe.com/output/1041596 |
Publisher URL | http://dx.doi.org/10.1111/j.1365-313X.2006.02842.x |
You might also like
An exploration of the direct biological targets of molecular hydrogen
(2024)
Book Chapter
H2S priming and plant abiotic stress tolerance
(2023)
Book Chapter
Reactive oxygen, nitrogen, and sulfur species cellular crosstalk
(2023)
Book Chapter
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search