Skip to main content

Research Repository

Advanced Search

Outputs (24)

3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing (2016)
Journal Article
Preen, R. J., You, J., Preen, R., Bull, L., Greenman, J., & Ieropoulos, I. (2017). 3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing. Sustainable Energy Technologies and Assessments, 19, 94-101. https://doi.org/10.1016/j.seta.2016.11.006

© 2016 The Authors For practical applications of the MFC technology, the design as well as the processes of manufacturing and assembly, should be optimised for the specific target use. Another burgeoning technology, additive manufacturing (3D printin... Read More about 3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing.

Autonomous energy harvesting and prevention of cell reversal in MFC stacks (2016)
Journal Article
Papaharalabos, G., Stinchcombe, A., Horsfield, I., Melhuish, C., Greenman, J., & Ieropoulos, I. (2017). Autonomous energy harvesting and prevention of cell reversal in MFC stacks. Journal of The Electrochemical Society, 164(3), H3047-H3051. https://doi.org/10.1149/2.0081703jes

© The Author(s) 2016. This study presents a novel method for avoiding cell reversal whilst optimising energy harvesting from stacked Microbial Fuel Cells (MFCs) by dynamically reconfiguring the electrical connections between them. The sequential chan... Read More about Autonomous energy harvesting and prevention of cell reversal in MFC stacks.

Electricity and catholyte production from ceramic MFCs treating urine (2016)
Journal Article
Merino Jimenez, I., Ieropoulos, I., & Greenman, J. (2017). Electricity and catholyte production from ceramic MFCs treating urine. International Journal of Hydrogen Energy, 42(3), 1791-1799. https://doi.org/10.1016/j.ijhydene.2016.09.163

© 2016 The Authors The use of ceramics as low cost membrane materials for Microbial Fuel Cells (MFCs) has gained increasing interest, due to improved performance levels in terms of power and catholyte production. The catholyte production in ceramic M... Read More about Electricity and catholyte production from ceramic MFCs treating urine.

Enhanced MFC power production and struvite recovery by the addition of sea salts to urine (2016)
Journal Article
Merino-Jimenez, I., Celorrio, V., Fermin, D. J., Greenman, J., & Ieropoulos, I. (2017). Enhanced MFC power production and struvite recovery by the addition of sea salts to urine. Water Research, 109, 46-53. https://doi.org/10.1016/j.watres.2016.11.017

© 2016 The Authors Urine is an excellent fuel for electricity generation in Microbial Fuel Cells (MFCs), especially with practical implementations in mind. Moreover, urine has a high content in nutrients which can be easily recovered. Struvite (MgNH4... Read More about Enhanced MFC power production and struvite recovery by the addition of sea salts to urine.

Toward Energetically Autonomous Foraging Soft Robots (2016)
Journal Article
Philamore, H., Ieropoulos, I., Stinchcombe, A., & Rossiter, J. (2016). Toward Energetically Autonomous Foraging Soft Robots. Soft Robotics, 3(4), 186-197. https://doi.org/10.1089/soro.2016.0020

© 2016, Mary Ann Liebert, Inc. A significant goal of robotics is to develop autonomous machines, capable of independent and collective operation free from human assistance. To operate with complete autonomy robots must be capable of independent movem... Read More about Toward Energetically Autonomous Foraging Soft Robots.

Eating, drinking, living, dying and decaying soft robots (2016)
Conference Proceeding
Rossiter, J., Winfield, J., & Ieropoulos, I. (2016). Eating, drinking, living, dying and decaying soft robots. In C. Laschi, J. Rossiter, F. Lida, M. Cianchetti, & L. Margheri (Eds.), Soft Robotics: Trends, Applications and Challenges (95-101). https://doi.org/10.1007/978-3-319-46460-2_12

Soft robotics opens up a whole range of possibilities that go far beyond conventional rigid and electromagnetic robotics. New smart materials and new design and modelling methodologies mean we can start to replicate the operations and functionalities... Read More about Eating, drinking, living, dying and decaying soft robots.

The dawn of biodegradable robots (2016)
Journal Article
Winfield, J., Rossiter, J., & Ieropoulos, I. (2016). The dawn of biodegradable robots

Robotics is a field that is not normally associated with green technology or sustainability. Robots are generally constructed using materials that are non-biodegradable, toxic and expensive. These factors can limit the potential uses that an artifici... Read More about The dawn of biodegradable robots.

An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1 (2016)
Journal Article
Fowler, G. J., Pereira-Medrano, A. G., Jaffe, S., Pasternak, G., Pham, T. K., Ledezma, P., …Wright, P. C. (2016). An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1. Proteomics, 16(21), 2764-2775. https://doi.org/10.1002/pmic.201500538

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Anodophilic bacteria have the ability to generate electricity in microbial fuel cells (MFCs) by extracellular electron transfer to the anode. We investigated the anode-specific responses of Shewanel... Read More about An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1.

Carbon-based air-breathing cathodes for microbial fuel cells (2016)
Journal Article
Merino-Jimenez, I., Santoro, C., Rojas-Carbonell, S., Greenman, J., Ieropoulos, I., & Atanassov, P. (2016). Carbon-based air-breathing cathodes for microbial fuel cells. Catalysts, 6(9), 127. https://doi.org/10.3390/catal6090127

© 2016 by the authors; licensee MDPI, Basel, Switzerland. A comparison between different carbon-based gas-diffusion air-breathing cathodes for microbial fuel cells (MFCs) is presented in this work. A micro-porous layer (MPL) based on carbon black (CB... Read More about Carbon-based air-breathing cathodes for microbial fuel cells.

Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals (2016)
Journal Article
Gajda, I., Stinchcombe, A., Greenman, J., Melhuish, C., & Ieropoulos, I. (2017). Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals. International Journal of Hydrogen Energy, 42(3), 1813-1819. https://doi.org/10.1016/j.ijhydene.2016.06.161

© 2016 The Authors This paper describes the suitability of the Microbial Fuel Cell (MFC) for generation of electrical power with a simultaneous synthesis of active catholyte in the form of caustic solution. The active solution formed inside a terraco... Read More about Microbial fuel cell – A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals.