Julian Klaus
Temporal trends in δ18O composition of precipitation in Germany: Insights from time series modelling and trend analysis
Klaus, Julian; Chun, Kwok Pan; Stumpp, Christine
Abstract
Temporal and spatial variations of stable oxygen (18O) and hydrogen (2H) isotope measurements in precipitation act as important proxies for changing hydro-meteorological and regional and global climate patterns. Temporal trends in time series of the stable isotope composition in precipitation were rarely observed, and they are poorly understood. These might be a result of a lack of proper trend detection tools and effort for exploring trend processes. Here, we investigate temporal trends of δ18O in precipitation at 17 observation stations in Germany between 1978 and 2009. We test if significant trends in the isotope time series from different models can be observed. Mann-Kendall trend tests are applied on the isotope series, using general multiplicative seasonal autoregressive integrate moving average (ARIMA) models, which account for first and higher order serial correlations. Effects of temperature, precipitation, and geographic parameters on isotope trends are also investigated in the proposed models. To benchmark our proposed approach, the ARIMA results are compared with a trend-free pre-whitening procedure, the state of the art method for removing the first order autocorrelation in environmental trend studies. Moreover, we further explore whether higher order serial correlations in isotope series affects our trend results. Overall, three out of the 17 stations show significant changes when higher order autocorrelation are adjusted, and four show a significant trend when temperature and precipitation effects are considered. The significant trends in the isotope time series generally occur only at low elevation stations. Higher order autoregressive processes are shown to be important in the isotope time series analysis. Results suggest that the widely used trend analysis with only the first order autocorrelation adjustment may not adequately take account of the high order autocorrelated processes in the stable isotope series. The investigated time series analysis method including higher autocorrelation and external climate variable adjustments is shown to be a better alternative.
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 28, 2014 |
Online Publication Date | Dec 3, 2014 |
Publication Date | Jun 15, 2015 |
Deposit Date | Jun 16, 2022 |
Journal | Hydrological Processes |
Print ISSN | 0885-6087 |
Electronic ISSN | 1099-1085 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 29 |
Issue | 12 |
Pages | 2668-2680 |
DOI | https://doi.org/10.1002/hyp.10395 |
Keywords | stable isotopes; precipitation; trend test; Mann–Kendall test; autocorrelation; ARIMA |
Public URL | https://uwe-repository.worktribe.com/output/9431564 |
Publisher URL | https://onlinelibrary.wiley.com/doi/10.1002/hyp.10395 |
You might also like
Spatiotemporal vegetation variations and projections driven by atmosphere-ocean oscillations at multiple time scales: A case study in Gansu, China
(2020)
Presentation / Conference Contribution
Visualet: Visualizing shapelets for time series classification
(2020)
Presentation / Conference Contribution
Analysing and projecting spatial drought conditions of the Seine catchment based on ocean-atmosphere oscillations over interannual and decadal scales
(2020)
Presentation / Conference Contribution
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search