Amir Bolouri Amir.Bolouri@uwe.ac.uk
Associate Professor in Manufacturing
A new design for friction stir spot joining of Al alloys and carbon fibre reinforced composites
Bolouri, Amir; Fotouhi, Mohamad; Moseley, William
Authors
Mohamad Fotouhi
William Moseley
Abstract
Friction stir spot welding (FSSW) has been recently developed to join dissimilar materials. However, the traditional requirement for a rotating tool consists of a pin and shoulder in FSSW leads to a complex joining process and unpredictable defects. In this study, a new static-shoulder design in FSSW was proposed and developed to join Al alloys to carbon fiber-reinforced polymer (CFRP) composites. The main joining parameters, including pin rotational speed, pin feed rate and pin plunge depth, were varied to investigate their effects on the joining temperature, materials interaction and the strength of joints. The pin rotational speed had the largest influence on the joining temperature. Lap shear tensile testing was conducted to evaluate the performance of the joints. The joints exhibited the ultimate lap shear force from 230 to 260 N. A brittle fracture occurred with the displacement-at-fracture load of 0.35-0.41 mm. Cross-sectional images revealed the creation of undulations on the surface of Al alloys in the joining zone. The undulations created a macro-mechanical interlocking bonding between the materials, which determined the performance of the joints. For a flat pin, by increasing the plunge depth from 1.25 to 1.30 mm, the undulation size increased from 0.21 to 0.26 mm, which can enhance the macro-mechanical interlocking bonding between Al alloys and CFRP and accordingly increased the ultimate shear force of the joints from 230 to 241 N. Use of a fluted pin significantly influenced the flow of the plasticized Al alloy which created pronounced undulations and large Al alloy spikes of 0.46 mm. These features seemed to establish an efficient macro-mechanical interlocking bonding, which resulted in a noticeable improvement in the performance of the joint. For a plunge depth of 1.30 mm, the ultimate shear force increased to 261 N using the fluted pin.
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 19, 2020 |
Online Publication Date | Aug 3, 2020 |
Publication Date | 2020 |
Deposit Date | Jul 21, 2020 |
Publicly Available Date | Aug 4, 2021 |
Journal | Journal of Materials Engineering and Performance |
Print ISSN | 1059-9495 |
Electronic ISSN | 1544-1024 |
Publisher | Springer Verlag |
Peer Reviewed | Peer Reviewed |
Volume | 29 |
Pages | 4913-4921 |
DOI | https://doi.org/10.1007/s11665-020-04998-1 |
Keywords | Composites; Polymer Matrix; Aluminum; Joining; Friction stir welding; Dissimilar material joining; Al alloys; Friction stir spot joining |
Public URL | https://uwe-repository.worktribe.com/output/6259842 |
Publisher URL | http://dx.doi.org/10.1007/s11665-020-04998-1 |
Files
JMEP-20-06-20699.R1 Proof Hi (3)
(634 Kb)
PDF
Licence
http://www.rioxx.net/licenses/all-rights-reserved
Publisher Licence URL
http://www.rioxx.net/licenses/all-rights-reserved
Copyright Statement
The final publication is available at Springer via https://doi.org/10.1007/s11665-020-04998-1
You might also like
Thin-plate forming by thixo- and rheoforging
(2014)
Journal Article
Processing of low-carbon cast steels for offshore structural applications
(2013)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search