Skip to main content

Research Repository

Advanced Search

Monitoring companion for industrial robotic processes

Sita, Enrico

Monitoring companion for industrial robotic processes Thumbnail


Authors



Abstract

For system integrators, optimizing complex industrial robotic applications (e.g. robotised welding) is a difficult and time-consuming task. This procedure is rendered tedious and often very hard to achieve when the operator cannot access the robotic system once in operation, perhaps because the installation is far away or because of the operational environment. In these circumstances, as an alternative to physically visiting the installation site, the system integrator may rely on additional nearby sensors to remotely acquire the necessary process information. While it is hard to completely replace this trial and error approach, it is possible to provide a way to gather process information more effectively that can be used in several robotic installations.
This thesis investigates the use of a "monitoring robot" in addition to the task robot(s) that belong to the industrial process to be optimized. The monitoring robot can be equipped with several different sensors and can be moved into close proximity of any installed task robot so that it can be used to collect information from that process during and/or after the operation without interfering. The thesis reviews related work in the industry and in the field of teleoperation to identify the most important challenges in remote monitoring and teleoperation. From the background investigation it is clear that two very important issues are: i) the nature of the teleoperator’s interface and; ii) the efficiency of the shared control between the human operator and the monitoring system. In order to investigate these two issues efficiently it was necessary to create experimental scenarios that operate independently from any application scenario, so an abstract problem domain is created. This way the monitoring system's control and interface can be evaluated in a context that presents challenges that are typical of a remote monitoring task but are not application domain specific. Therefore the validity of the proposed approach can be assessed from a generic and, therefore, more powerful and widely applicable perspective. The monitoring framework developed in this thesis is described, both in the shared control design choices based on virtual fixtures (VF) and the implementation in a 3D visualization environment. The monitoring system developed is evaluated with a usability study with user participants. The usability study aims at assessing the system's performance along with its acceptance and ease of use in a static monitoring task, accompanied by user\hyp{}filled TLX questionnaires.
Since future work will apply this system in real robotic welding scenarios, this thesis finally reports some preliminary work in such an application.

Thesis Type Thesis
Deposit Date Jun 5, 2020
Publicly Available Date Jan 6, 2021
Public URL https://uwe-repository.worktribe.com/output/6004547
Award Date Jan 6, 2021

Files






You might also like



Downloadable Citations