Skip to main content

Research Repository

Advanced Search

Background synaptic activity in rat entorhinal cortex shows a progressively greater dominance of inhibition over excitation from deep to superficial layers

Jones, Roland Spencer Gwynne; Greenhill, Stuart David; Chamberlain, Sophie Elizabeth Lyn; Lench, Alex; Massey, Peter Vernon; Yuill, Kathryn Heather; Woodhall, Gavin Lawrence; Spencer, Roland; Dickson, Clayton T

Authors

Roland Spencer Gwynne Jones

Stuart David Greenhill

Sophie Elizabeth Lyn Chamberlain

Alex Lench

Peter Vernon Massey

Kathryn Yuill Kathryn.Yuill@uwe.ac.uk
Senior Lecturer in Healthcare Sciences

Gavin Lawrence Woodhall

Roland Spencer

Clayton T Dickson



Abstract

The entorhinal cortex (EC) controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2) and V (L5). Here, we add comparative studies in layer III (L3). Such studies essentially look at neuronal activity from a presynaptic viewpoint. To correlate this with the postsynaptic consequences of spontaneous transmitter release, we have determined global postsynaptic conductances mediated by the two transmitters, using a method to estimate conductances from membrane potential fluctuations. We have previously presented some of this data for L3 and now extend to L2 and L5. Inhibition dominates excitation in all layers but the ratio follows a clear rank order (highest to lowest) of L2>L3>L5. The variance of the background conductances was markedly higher for excitation and inhibition in L2 compared to L3 or L5. We also show that induction of synchronized network epileptiform activity by blockade of GABA inhibition reveals a relative reluctance of L2 to participate in such activity. This was associated with maintenance of a dominant background inhibition in L2, whereas in L3 and L5 the absolute level of inhibition fell below that of excitation, coincident with the appearance of synchronized discharges. Further experiments identified potential roles for competition for bicuculline by ambient GABA at the GABAA receptor, and strychnine-sensitive glycine receptors in residual inhibition in L2. We discuss our results in terms of control of excitability in neuronal subpopulations of EC neurones and what these may suggest for their functional roles. © 2014 Greenhill et al.

Journal Article Type Article
Acceptance Date Nov 22, 2013
Publication Date Jan 15, 2014
Deposit Date Jul 1, 2019
Publicly Available Date Jul 1, 2019
Journal PLoS ONE
Electronic ISSN 1932-6203
Publisher Public Library of Science
Peer Reviewed Peer Reviewed
Volume 9
Issue 1
Article Number e85125
DOI https://doi.org/10.1371/journal.pone.0085125
Public URL https://uwe-repository.worktribe.com/output/1467156
Publisher URL https://doi.org/10.1371/journal.pone.0085125
Contract Date Jul 1, 2019

Files





You might also like



Downloadable Citations