Skip to main content

Research Repository

Advanced Search

Weighted domination models and randomized heuristics

Zverovich, Vadim; Dijkstra, Lukas; Gagarin, Andrei

Weighted domination models and randomized heuristics Thumbnail


Authors

Lukas Dijkstra

Andrei Gagarin



Abstract

We consider the minimum weight and smallest weight minimum-size dominating set problems in vertex-weighted graphs and networks. The latter problem is a two-objective optimization problem, which is different from the classic minimum weight dominating set problem that requires finding a dominating set of the smallest weight in a graph without trying to optimize its cardinality. In other words, the objective of minimizing the size of the dominating set in the two-objective problem can be considered as a constraint, i.e. a particular case of finding Pareto-optimal solutions. First, we show how to reduce the two-objective optimization problem to the minimum weight dominating set problem by using Integer Linear Programming formulations. Then, under different assumptions, the probabilistic method is applied to obtain upper bounds on the minimum weight dominating sets in graphs. The corresponding randomized algorithms for finding small-weight dominating sets in graphs are described as well. Computational experiments are used to illustrate the results for two different types of random graphs.

Journal Article Type Article
Acceptance Date May 29, 2025
Online Publication Date Jun 15, 2025
Publication Date Jun 26, 2025
Deposit Date Jun 28, 2025
Publicly Available Date Jul 3, 2025
Journal Utilitas Mathematica
Electronic ISSN 0315-3681
Publisher Combinatorial Press
Peer Reviewed Peer Reviewed
Volume 123
Pages 61-86
DOI https://doi.org/10.61091/um123-05
Public URL https://uwe-repository.worktribe.com/output/14475070

Files






You might also like



Downloadable Citations