Skip to main content

Research Repository

Advanced Search

Adsorption in action: Molecular dynamics as a tool to study adsorption at the surface of fine plastic particles in aquatic environments

Townsend, Piers A.

Adsorption in action: Molecular dynamics as a tool to study adsorption at the surface of fine plastic particles in aquatic environments Thumbnail


Authors

Profile image of Piers Townsend

Dr Piers Townsend Piers.Townsend@uwe.ac.uk
Lecturer in Environmental and Forensic Toxicology



Abstract

The presence of microscopic fine plastic particles (FPPs) in aquatic environments continues to be a societal issue of great concern. Further, the adsorption of pollutants and other macromolecules onto the surface of FPPs is a well-known phenomenon. To establish the adsorption behavior of pollutants and the adsorption capacity of different plastic materials, batch adsorption experiments are typically carried out, wherein known concentrations of a pollutant are added to a known amount of plastic. These experiments can be time-consuming and wasteful by design, and in this work, an alternative theoretical approach to considering the problem is reviewed. As a theoretical tool, molecular dynamics (MD) can be used to probe and understand adsorbent-adsorbate interactions at the molecular scale while also providing a powerful visual picture of how the adsorption process occurs. In recent years, numerous studies have emerged that used MD as a theoretical tool to study adsorption on FPPs, and in this work, these studies are presented and discussed across three main categories: (i) organic pollutants, (ii) inorganic pollutants, and (iii) biological macromolecules. Emphasis is placed on how MD-calculated interaction energies can align with experimental data from batch adsorption experiments, and particular consideration is given to how MD can complement existing approaches. This work demonstrates that MD can provide significant insight into the adsorption behavior of different pollutants, but modern approaches are lacking a generalized formula for theoretically predicting adsorption behavior. With more data, MD could be used as a robust, initial assessment tool for the prioritization of chemical pollutants in the context of the microplastisphere, meaning that less time-consuming and potentially wasteful experiments would need to be carried out. With additional refinement, modern simulations will facilitate an improved understanding of chemical adsorption in aquatic environments.

Journal Article Type Review
Acceptance Date Dec 13, 2023
Online Publication Date Jan 29, 2024
Publication Date Feb 6, 2024
Deposit Date Apr 29, 2024
Publicly Available Date Apr 30, 2024
Journal ACS Omega
Electronic ISSN 2470-1343
Publisher American Chemical Society
Peer Reviewed Peer Reviewed
Volume 9
Issue 5
Pages 5142-5156
DOI https://doi.org/10.1021/acsomega.3c07488
Public URL https://uwe-repository.worktribe.com/output/11769084

Files






You might also like



Downloadable Citations