P. K. Sharpe
Self organising maps for the investigation of clinical data: A case study
Sharpe, P. K.; Caleb-Solly, Praminda
Authors
Praminda Caleb-Solly
Abstract
The clinical process often involves comparisons of how one set of measurements is related to previous, similar, data and the use of this information to take decisions concerning possible courses of action, often with insufficient data to make meaningful calculations of probabilities. Self-organising maps are useful devices for data visualisation. To illustrate how visualisation with self-organising maps might be used in the clinical process, this paper describes the investigation of an osteoporosis data set using this technique. The data set had previously been used to show that backpropagation neural networks were capable of distinguishing between patients who had suffered a fracture, and those who had not using measured bone mineral density values; illustrating the power of these networks to model relationships in data. However, we had realised that this was somewhat of an academic exercise given that in reality a non-fracture case might be a fracture case waiting to happen. We felt it would be more productive to examine the data itself rather than model an imposed classification. As part of this investigation, the data set was examined using self-organising maps. From the results of the investigation, we conclude that it is possible to create a map, a compressed data representation, using BMD values which may then be partitioned into low and high fracture risk areas. Using such a map may be a useful screening mechanism for detecting people at risk of osteoporotic fracture.
Journal Article Type | Article |
---|---|
Publication Date | Jan 1, 1998 |
Journal | Neural Computing and Applications |
Print ISSN | 0941-0643 |
Electronic ISSN | 1433-3058 |
Publisher | Springer (part of Springer Nature) |
Peer Reviewed | Peer Reviewed |
Volume | 7 |
Issue | 1 |
Pages | 65-70 |
DOI | https://doi.org/10.1007/BF01413710 |
Keywords | data visualisation, decision support, fracture, neural networks, osteoporosis, self-organising maps |
Public URL | https://uwe-repository.worktribe.com/output/1101646 |
Publisher URL | http://dx.doi.org/10.1007/BF01413710 |
You might also like
Personalized robot assistant for support in dressing
(2018)
Journal Article
Downloadable Citations
About UWE Bristol Research Repository
Administrator e-mail: repository@uwe.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search