Skip to main content

Research Repository

Advanced Search

Forecasting urban residential stock turnover dynamics using system dynamics and Bayesian model averaging

Zhou, Wei; O'Neill, Eoghan; Moncaster, Alice; Reiner, David; Guthrie, Peter

Authors

Wei Zhou

Eoghan O'Neill

Profile image of Alice Moncaster

Alice Moncaster Alice.Moncaster@uwe.ac.uk
Professor in Digital and Sustainable Construction

David Reiner

Peter Guthrie



Abstract

Knowing the size of building stock is perhaps the most basic determinant in assessing energy use in buildings. However, official statistics on urban residential stock for many countries are piecemeal at best. Previous studies estimating stock size and energy use make various debateable methodological assumptions and only produce deterministic results. This paper presents a Bayesian approach to characterise stock turnover dynamics and estimate stock size uncertainties, applied here to China. Firstly, a probabilistic dynamic building stock turnover model is developed to describe the building aging and demolition process, governed by a hazard function specified by a parametric survival model. Secondly, using five candidate parametric survival models, the building stock turnover model is simulated through Markov Chain Monte Carlo to obtain posterior distributions of model-specific parameters, estimate marginal likelihood, and make predictions of stock size. Thirdly, Bayesian Model Averaging is applied to create a model ensemble that combines model-specific posterior predictive distributions of the recent historical stock evolution pathway in proportion to posterior model probabilities. Finally, the Bayesian Model Averaging model ensemble is extended to forecast future trajectories of residential stock development through 2100. The modelling results suggest that the total stock in China will peak around 2065, at between 42.4 and 50.1 billion m2. This Bayesian modelling framework produces probability distributions of annual total stock, age-specific substocks, annual new buildings and annual demolition rates. This can support future analysis of policy trade-offs across embodied-versus-operational energy consumption, in the context of sector-wide decarbonisation.

Journal Article Type Article
Acceptance Date Jun 8, 2020
Online Publication Date Jun 19, 2020
Publication Date Oct 1, 2020
Deposit Date Jul 17, 2023
Journal Applied Energy
Print ISSN 0306-2619
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 275
Article Number 115388
DOI https://doi.org/10.1016/j.apenergy.2020.115388
Keywords building stock; lifetime distribution; System Dynamics; Bayesian Model Averaging; Markov Chain Monte Carlo; embodied energy; operational energy; China
Public URL https://uwe-repository.worktribe.com/output/10938563