Skip to main content

Research Repository

Advanced Search

A deep learning approach for context-aware citation recommendation using rhetorical zone classification and similarity to overcome cold-start problem (2022)
Journal Article
Abbas, M., Ajayi, S., Bilal, M., Oyegoke, A., Pasha, M., & Tauqeer Ali, H. (in press). A deep learning approach for context-aware citation recommendation using rhetorical zone classification and similarity to overcome cold-start problem. Journal of Ambient Intelligence and Humanized Computing, https://doi.org/10.1007/s12652-022-03899-6

In the recent decade, the citation recommendation has emerged as an important research topic due to its need for the huge size of published scientific work. Among other citation recommendation techniques, the widely used content-based filtering (CBF)... Read More about A deep learning approach for context-aware citation recommendation using rhetorical zone classification and similarity to overcome cold-start problem.

A scalable deep learning system for monitoring and forecasting pollutant concentration levels on UK highways (2022)
Journal Article
Akinosho, T. D., Oyedele, L. O., Bilal, M., Barrera-Animas, A. Y., Gbadamosi, A. Q., & Olawale, O. A. (2022). A scalable deep learning system for monitoring and forecasting pollutant concentration levels on UK highways. Ecological Informatics, 69, https://doi.org/10.1016/j.ecoinf.2022.101609

The construction of intercity highways by the government has resulted in a progressive increase in vehicle emissions and pollution from noise, dust, and vibrations despite its recognition of the air pollution menace. Efforts that have targeted roadsi... Read More about A scalable deep learning system for monitoring and forecasting pollutant concentration levels on UK highways.

Integrating single-shot fast gradient sign method (FGSM) with classical image processing techniques for generating adversarial attacks on deep learning classifiers (2022)
Conference Proceeding
Hassan, M., Younis, S., Rasheed, A., & Bilal, M. (2022). Integrating single-shot fast gradient sign method (FGSM) with classical image processing techniques for generating adversarial attacks on deep learning classifiers. In Proceedings Volume 12084, Fourteenth International Conference on Machine Vision (ICMV 2021)https://doi.org/10.1117/12.2623585

Deep learning architectures have emerged as powerful function approximators in a broad spectrum of complex representation learning tasks, such as, computer vision, natural language processing and collaborative filtering. These architectures bear a hi... Read More about Integrating single-shot fast gradient sign method (FGSM) with classical image processing techniques for generating adversarial attacks on deep learning classifiers.

Rainfall Prediction: A Comparative Analysis of Modern Machine Learning Algorithms for Time-Series Forecasting (2021)
Journal Article
Barrera Animas, A., Oladayo Oyedele, L., Bilal, M., Dolapo Akinosho, T., Davila Delgado, J. M., & Adewale Akanbi, L. (2022). Rainfall Prediction: A Comparative Analysis of Modern Machine Learning Algorithms for Time-Series Forecasting. Machine Learning with Applications, 7, https://doi.org/10.1016/j.mlwa.2021.100204

Rainfall forecasting has gained utmost research relevance in recent times due to its complexities and persistent applications such as flood forecasting and monitoring of pollutant concentration levels, among others. Existing models use complex statis... Read More about Rainfall Prediction: A Comparative Analysis of Modern Machine Learning Algorithms for Time-Series Forecasting.

Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges (2021)
Journal Article
Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Davila Delgado, J. M., Bilal, M., …Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 44, https://doi.org/10.1016/j.jobe.2021.103299

The growth of the construction industry is severely limited by the myriad complex challenges it faces such as cost and time overruns, health and safety, productivity and labour shortages. Also, construction industry is one the least digitized industr... Read More about Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges.

Deep learning and Boosted trees for injuries prediction in power infrastructure projects (2021)
Journal Article
Oyedele, A., Ajayi, A., Oyedele, L. O., Delgado, J. M. D., Akanbi, L., Akinade, O., …Bilal, M. (2021). Deep learning and Boosted trees for injuries prediction in power infrastructure projects. Applied Soft Computing, 110(107587), 1 - 14. https://doi.org/10.1016/j.asoc.2021.107587

Electrical injury impacts are substantial and massive. Investments in electricity will continue to increase, leading to construction project complexities, which undoubtedly contribute to injuries and associated effects. Machine learning (ML) algorith... Read More about Deep learning and Boosted trees for injuries prediction in power infrastructure projects.

Cloud computing in construction industry: Use cases, benefits and challenges (2020)
Journal Article
Bello, S. A., Oyedele, L. O., Akinade, O. O., Bilal, M., Davila Delgado, J. M., Akanbi, L. A., …Owolabi, H. A. (2021). Cloud computing in construction industry: Use cases, benefits and challenges. Automation in Construction, 122, https://doi.org/10.1016/j.autcon.2020.103441

Cloud computing technologies have revolutionised several industries (such as aerospace, manufacturing, automobile, retail, etc.) for several years. Although the construction industry is well placed to also leverage these technologies for competitive... Read More about Cloud computing in construction industry: Use cases, benefits and challenges.

Big data for design options repository: Towards a DFMA approach for offsite construction (2020)
Journal Article
Gbadamosi, A., Oyedele, L., Mahamadu, A., Kusimo, H., Bilal, M., Davila Delgado, J. M., & Muhammed-Yakubu, N. (2020). Big data for design options repository: Towards a DFMA approach for offsite construction. Automation in Construction, 120, https://doi.org/10.1016/j.autcon.2020.103388

A persistent barrier to the adoption of offsite construction is the lack of information for assessing prefabrication alternatives and the choices of suppliers. This study integrates three aspects of offsite construction, including BIM, DFMA and big d... Read More about Big data for design options repository: Towards a DFMA approach for offsite construction.

Deep learning in the construction industry: A review of present status and future innovations (2020)
Journal Article
Akinosho, T. D., Oyedele, L. O., Bilal, M., Ajayi, A. O., Delgado, M. D., Akinade, O. O., & Ahmed, A. A. (2020). Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 32, https://doi.org/10.1016/j.jobe.2020.101827

The construction industry is known to be overwhelmed with resource planning, risk management and logistic challenges which often result in design defects, project delivery delays, cost overruns and contractual disputes. These challenges have instigat... Read More about Deep learning in the construction industry: A review of present status and future innovations.

Life cycle assessment approach for renewable multi-energy system: A comprehensive analysis (2020)
Journal Article
Luo, X., Oyedele, L. O., Owolabi, H. A., Bilal, M., Ajayi, A. O., & Akinade, O. O. (2020). Life cycle assessment approach for renewable multi-energy system: A comprehensive analysis. Energy Conversion and Management, 224, https://doi.org/10.1016/j.enconman.2020.113354

In response to the gradual degradation of natural sources, there is a growing interest in adopting renewable resources for various building energy supply. In this study, a comprehensive life cycle assessment approach is proposed for a renewable multi... Read More about Life cycle assessment approach for renewable multi-energy system: A comprehensive analysis.

Secure and robust machine learning for healthcare: A survey (2020)
Journal Article
Qayyum, A., Qadir, J., Bilal, M., & Al Fuqaha, A. (2020). Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering, 14, 156-180. https://doi.org/10.1109/rbme.2020.3013489

Recent years have witnessed widespread adoption of machine learning (ML)/deep learning (DL) techniques due to their superior performance for a variety of healthcare applications ranging from the prediction of cardiac arrest from one-dimensional heart... Read More about Secure and robust machine learning for healthcare: A survey.

Optimised Big Data analytics for health and safety hazards prediction in power infrastructure operations (2020)
Journal Article
Ajayi, A., Oyedele, L., Akinade, O., Bilal, M., Akanbi, L., Delgado, J. M. D., & Owolabi, H. (2020). Optimised Big Data analytics for health and safety hazards prediction in power infrastructure operations. Safety Science, 125, https://doi.org/10.1016/j.ssci.2020.104656

© 2020 Elsevier Ltd Forecasting imminent accidents in power infrastructure projects require a robust and accurate prediction model to trigger a proactive strategy for risk mitigation. Unfortunately, getting ready-made machine learning algorithms to e... Read More about Optimised Big Data analytics for health and safety hazards prediction in power infrastructure operations.

Big Data with deep learning for benchmarking profitability performance in project tendering (2020)
Journal Article
Bilal, M., & Oyedele, L. O. (2020). Big Data with deep learning for benchmarking profitability performance in project tendering. Expert Systems with Applications, 147, https://doi.org/10.1016/j.eswa.2020.113194

© 2020 A reliable benchmarking system is crucial for the contractors to evaluate the profitability performance of project tenders. Existing benchmarks are ineffective in the tender evaluation task for three reasons. Firstly, these benchmarks are most... Read More about Big Data with deep learning for benchmarking profitability performance in project tendering.

Guidelines for applied machine learning in construction industry—A case of profit margins estimation (2019)
Journal Article
Bilal, M., & Oyedele, L. (2020). Guidelines for applied machine learning in construction industry—A case of profit margins estimation. Advanced Engineering Informatics, 43, 101013. https://doi.org/10.1016/j.aei.2019.101013

© 2019 Elsevier Ltd The progress in the field of Machine Learning (ML) has enabled the automation of tasks that were considered impossible to program until recently. These advancements today have incited firms to seek intelligent solutions as part of... Read More about Guidelines for applied machine learning in construction industry—A case of profit margins estimation.

Risk mitigation in PFI/PPP project finance: A framework model for financiers’ bankability criteria (2019)
Journal Article
Owolabi, H., Oyedele, L., Alaka, H., Ajayi, S., Bilal, M., & Akinade, O. (2020). Risk mitigation in PFI/PPP project finance: A framework model for financiers’ bankability criteria. Built Environment Project and Asset Management, 10(1), 28-49. https://doi.org/10.1108/BEPAM-09-2018-0120

Purpose: Earlier studies on risk evaluation in private finance initiative and public private partnerships (PFI/PPP) projects have focussed more on quantitative approaches despite increasing call for contextual understanding of the bankability of risk... Read More about Risk mitigation in PFI/PPP project finance: A framework model for financiers’ bankability criteria.

Design for deconstruction using a circular economy approach: Barriers and strategies for improvement (2019)
Journal Article
Akinade, O., Oyedele, L., Oyedele, A., Davila Delgado, J. M., Bilal, M., Akanbi, L., …Owolabi, H. (2020). Design for deconstruction using a circular economy approach: Barriers and strategies for improvement. Production Planning and Control, 31(10), 829-840. https://doi.org/10.1080/09537287.2019.1695006

This study explores the current practices of Design for Deconstruction (DfD) as a strategy for achieving circular economy. Keeping in view the opportunities accruable from DfD, a review of the literature was carried out and six focus group interviews... Read More about Design for deconstruction using a circular economy approach: Barriers and strategies for improvement.

Deep learning models for health and safety risk prediction in power infrastructure projects (2019)
Journal Article
Ajayi, A., Oyedele, L., Owolabi, H., Akinade, O., Bilal, M., Davila Delgado, J. M., & Akanbi, L. (2020). Deep learning models for health and safety risk prediction in power infrastructure projects. Risk Analysis, 40(10), 2019-2039. https://doi.org/10.1111/risa.13425

Inappropriate management of Health and safety (H&S) risk in power infrastructure projects can result in occupational accidents and equipment damage. Accidents at work have detrimental effects on workers, company, and the general public. Despite the a... Read More about Deep learning models for health and safety risk prediction in power infrastructure projects.

Big data analytics system for costing power transmission projects (2019)
Journal Article
Delgado, J. M. D., Oyedele, L., Bilal, M., Ajayi, A., Akanbi, L., & Akinade, O. (2020). Big data analytics system for costing power transmission projects. Journal of Construction Engineering and Management, 146(1), https://doi.org/10.1061/%28ASCE%29CO.1943-7862.0001745

© 2019 American Society of Civil Engineers. Inaccurate cost estimates have significant impacts on the final cost of power transmission projects and erode profits. Methods for cost estimation have been investigated thoroughly, but they are not used wi... Read More about Big data analytics system for costing power transmission projects.

Critical success factors for ensuring bankable completion risk in PFI/PPP megaprojects (2019)
Journal Article
Owolabi, H. A., Oyedele, L. O., Alaka, H. A., Ajayi, S. O., Akinade, O. O., & Bilal, M. (2020). Critical success factors for ensuring bankable completion risk in PFI/PPP megaprojects. Journal of Management in Engineering, 36(1), https://doi.org/10.1061/%28ASCE%29ME.1943-5479.0000717

© 2019 American Society of Civil Engineers. This study investigates project financiers' perspectives on the bankability of completion risk in private finance initiative and public-private partnership (PFI/PPP) megaprojects. Using a mixed methodology... Read More about Critical success factors for ensuring bankable completion risk in PFI/PPP megaprojects.

Robotics and automated systems in construction: Understanding industry-specific challenges for adoption (2019)
Journal Article
Davila Delgado, J. M., Oyedele, L., Ajayi, A., Akanbi, L., Akinade, L., Bilal, M., & Owolabi, H. (2019). Robotics and automated systems in construction: Understanding industry-specific challenges for adoption. Journal of Building Engineering, 26, https://doi.org/10.1016/j.jobe.2019.100868

© 2019 The Authors The construction industry is a major economic sector, but it is plagued with inefficiencies and low productivity. Robotics and automated systems have the potential to address these shortcomings; however, the level of adoption in th... Read More about Robotics and automated systems in construction: Understanding industry-specific challenges for adoption.