Skip to main content

Research Repository

Advanced Search

All Outputs (192)

Anode surface modification with activated carbon for improved power generation in urine fed Microbial Fuel Cells (2018)
Presentation / Conference
Gajda, I., You, J., Santoro, C., Greenman, J., & Ieropoulos, I. (2018, September). Anode surface modification with activated carbon for improved power generation in urine fed Microbial Fuel Cells. Poster presented at 69th Annual Meeting of the International Society of Electrochemistry, Bologna, Italy

Microbial Fuel Cells (MFCs) utilise organic feedstocks such as urine as fuel for direct electricity production, by employing anode respiring microbes that convert organic matter into electrons while treating waste. One possible approach to bring this... Read More about Anode surface modification with activated carbon for improved power generation in urine fed Microbial Fuel Cells.

Short- and long-term effects of a dentifrice containing dual zinc plus arginine on intra-oral halitosis: Improvements in breath quality (2018)
Journal Article
Saad, S., Fitzgerald, M., Hewett, K., Greenman, J., Vandeven, M., Trivedi, H., & Masters, J. (2018). Short- and long-term effects of a dentifrice containing dual zinc plus arginine on intra-oral halitosis: Improvements in breath quality. Journal of Clinical Dentistry, 29(3 (Special Issue A)), 46-54

Objectives: These studies aimed to assess the short-term (12-hour, single use) and long-term (four weeks, continuous use) efficacy of a new Dual Zinc plus Arginine dentifrice against intra-oral halitosis versus a negative control. Methods: Two cl... Read More about Short- and long-term effects of a dentifrice containing dual zinc plus arginine on intra-oral halitosis: Improvements in breath quality.

Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height (2018)
Journal Article
Walter, X. A., Santoro, C., Greenman, J., & Ieropoulos, I. (2019). Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height. International Journal of Hydrogen Energy, 44(9), 4524-4532. https://doi.org/10.1016/j.ijhydene.2018.07.033

© 2018 The Author(s) Power generation of bioelectrochemical systems (BESs) is a very important electrochemical parameter to consider particularly when the output has to be harvested for practical applications. This work studies the effect of cathode... Read More about Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height.

Multi-functional microbial fuel cells for power, treatment and electro-osmotic purification of urine (2018)
Journal Article
Gajda, I., Greenman, J., Santoro, C., Serov, A., Atanassov, P., Melhuish, C., & Ieropoulos, I. (2019). Multi-functional microbial fuel cells for power, treatment and electro-osmotic purification of urine. Journal of Chemical Technology and Biotechnology, 94(7), 2098-2106. https://doi.org/10.1002/jctb.5792

© 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. BACKGROUND: In this work, a small-scale ceramic microbial fuel cell (MFC) with a novel type of metal–... Read More about Multi-functional microbial fuel cells for power, treatment and electro-osmotic purification of urine.

A New Method for Modulation, Control and Power Boosting in Microbial Fuel Cells (2018)
Journal Article
Ieropoulos, I., You, J., Gajda, I., & Greenman, J. (2018). A New Method for Modulation, Control and Power Boosting in Microbial Fuel Cells. Fuel Cells, 18(5), 663-668. https://doi.org/10.1002/fuce.201800009

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Microbial fuel cells (MFCs) are energy transducers, which through the metabolic reactions of facultative anaerobic microorganisms, transform the energy in organic matter directly into electricity. E... Read More about A New Method for Modulation, Control and Power Boosting in Microbial Fuel Cells.

Development of small scale ceramic Microbial Fuel Cells for clean energy extraction from urine (2018)
Presentation / Conference
Gajda, I., Walter, X. A., Obata, T., Greenman, J., & Ieropoulos, I. (2018, June). Development of small scale ceramic Microbial Fuel Cells for clean energy extraction from urine. Presented at 14th International Ceramics Congress 2018, Perugia, Italy

During the last 20 years great interest in Microbial Fuel Cells (MFCs) has intensified due to the extraction of clean electricity from waste streams such as urine. The technology is based on ceramic built MFCs in which the terracotta chassis is also... Read More about Development of small scale ceramic Microbial Fuel Cells for clean energy extraction from urine.

3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs) (2018)
Presentation / Conference
Theodosiou, P., Ieropoulos, I., & Greenman, J. (2018, May). 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs). Presented at 233rd ECS Meeting, Seattle, WA

Biological fuel cells (BFCs) are an increasingly growing area of research as it beholds long-term sustainable advantages over conventional fuel cells. Microbial Fuel Cells (MFCs) are just one type of BFCs, which as the name implies, employ microbial... Read More about 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs).

PEE POWER® urinal II - Urinal scale-up with microbial fuel cell scale-down for improved lighting (2018)
Journal Article
Walter, X. A., Merino-Jiménez, I., Greenman, J., & Ieropoulos, I. (2018). PEE POWER® urinal II - Urinal scale-up with microbial fuel cell scale-down for improved lighting. Journal of Power Sources, 392, 150-158. https://doi.org/10.1016/j.jpowsour.2018.02.047

© 2018 The Authors A novel design of microbial fuel cells (MFC) fuelled with undiluted urine was demonstrated to be an efficient power source for decentralised areas, but had only been tested under controlled laboratory conditions. Hence, a field-tri... Read More about PEE POWER® urinal II - Urinal scale-up with microbial fuel cell scale-down for improved lighting.

Ceramic Microbial Fuel Cells Stack: Power generation in standard and supercapacitive mode (2018)
Journal Article
Santoro, C., Flores-Cadengo, C., Soavi, F., Kodali, M., Merino-Jimenez, I., Gajda, I., …Atanassov, P. (2018). Ceramic Microbial Fuel Cells Stack: Power generation in standard and supercapacitive mode. Scientific Reports, 8(3281), https://doi.org/10.1038/s41598-018-21404-y

© 2018 The Author(s). In this work, a microbial fuel cell (MFC) stack containing 28 ceramic MFCs was tested in both standard and supercapacitive modes. The MFCs consisted of carbon veil anodes wrapped around the ceramic separator and air-breathing ca... Read More about Ceramic Microbial Fuel Cells Stack: Power generation in standard and supercapacitive mode.

Microbial fuel cell, method of controlling and measuring the redox potential difference of the fuel cell (2018)
Patent
Greenman, J., & Ieropoulos, Y. (2020). Microbial fuel cell, method of controlling and measuring the redox potential difference of the fuel cell. US20180013162A1

A microbial fuel cell (MFC) in which the anode and/or cathode half-cell comprises at least one additional electrode insulated from direct contact with the working electrode and arranged to be coupled to an external voltage or current source, wherein... Read More about Microbial fuel cell, method of controlling and measuring the redox potential difference of the fuel cell.

Energy and metabolism (2018)
Book Chapter
Ieropoulos, I. A., Ledezma, P., Scandroglio, G., Melhuish, C., & Greenman, J. (2018). Energy and metabolism. In T. J. Prescott, N. Lepora, & P. F. Verschure (Eds.), Living Machines: A Handbook of Research in Biomimetics and Biohybrid Systems (62-72). Oxford University Press (OUP). https://doi.org/10.1093/oso/9780199674923.003.0006

© Oxford University Press, 2018 and University of Tartu Press, 2012. Energy resulting from metabolism is essential for any living system-from single-cell to multicellular organisms. This also applies to symbiotic robots (SymBots), which function util... Read More about Energy and metabolism.

Passive feeding in paper-based microbial fuel cells (2018)
Journal Article
Winfield, J., Milani, P., Greenman, J., & Ieropoulos, I. (2018). Passive feeding in paper-based microbial fuel cells. ECS Transactions, 85(13), 1193-1200. https://doi.org/10.1149/08513.1193ecst

Microbial fuel cells (MFCs) are often constructed using materials such as plastic that can be hazardous to the environment. Building MFCs from paper is a sustainable option, making the fuel cells lightweight and easy to carry. Transported in the bott... Read More about Passive feeding in paper-based microbial fuel cells.

Novel Analytical Microbial Fuel Cell Design for Rapid in Situ Optimisation of Dilution Rate and Substrate Supply Rate, by Flow, Volume Control and Anode Placement (2018)
Journal Article
You, J., Greenman, J., & Ieropoulos, I. (2018). Novel Analytical Microbial Fuel Cell Design for Rapid in Situ Optimisation of Dilution Rate and Substrate Supply Rate, by Flow, Volume Control and Anode Placement. Energies, 11(9), 2377. https://doi.org/10.3390/en11092377

© 2018 MDPI AG. All rights reserved. A new analytical design of continuously-fed microbial fuel cell was built in triplicate in order to investigate relations and effects of various operating parameters such as flow rate and substrate supply rate, in... Read More about Novel Analytical Microbial Fuel Cell Design for Rapid in Situ Optimisation of Dilution Rate and Substrate Supply Rate, by Flow, Volume Control and Anode Placement.

Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode (2017)
Journal Article
Gajda, I., Greenman, J., Santoro, C., Serov, A., Melhuish, C., Atanassov, P., & Ieropoulos, I. (2018). Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode. Energy, 144, 1073-1079. https://doi.org/10.1016/j.energy.2017.11.135

© 2017 Power output limitation is one of the main challenges that needs to be addressed for full-scale applications of the Microbial Fuel Cell (MFC) technology. Previous studies have examined electrochemical performance of different cathode electrode... Read More about Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode.

EvoBot: Towards a robot-chemostat for culturing and maintaining Microbial Fuel Cells (MFCs) (2017)
Conference Proceeding
Theodosiou, P., Faina, A., Nejatimoharrami, F., Stoy, K., Greenman, J., Melhuish, C., & Ieropoulos, I. (2017). EvoBot: Towards a robot-chemostat for culturing and maintaining Microbial Fuel Cells (MFCs). In N. Lepora, T. Prescott, P. F. Verschure, A. Mura, M. Cutkosky, & M. Mangan (Eds.), Biomimetic and Biohybrid Systems. , (453-464). https://doi.org/10.1007/978-3-319-63537-8_38

In this paper we present EvoBot, a RepRap open-source 3D-printer modified to operate like a robot for culturing and maintaining Microbial Fuel Cells (MFCs). EvoBot is a modular liquid handling robot that has been adapted to host MFCs in its experimen... Read More about EvoBot: Towards a robot-chemostat for culturing and maintaining Microbial Fuel Cells (MFCs).

Towards a self-powered biosensors for environmental applications in remote, off-grid areas (2017)
Journal Article
Pasternak, G., Greenman, J., & Ieropoulos, I. (2017). Towards a self-powered biosensors for environmental applications in remote, off-grid areas. Procedia Technology, 27, 8-9. https://doi.org/10.1016/j.protcy.2017.04.005

One important factor for developing biosensors is taking the source of electrical energy into account. The source of electricity is needed whenever we consider point-of-care diagnostics, in-vivo tests or in particular – environmental applications. Th... Read More about Towards a self-powered biosensors for environmental applications in remote, off-grid areas.

Electricity production from human urine in ceramic microbial fuel cells with alternative non-fluorinated polymer binders for cathode construction (2017)
Journal Article
Salar-Garcia, M. J., Ortiz-Martinez, V., Gajda, I., Greenman, J., Hernández-Fernández, F. J., & Ieropoulos, I. (2017). Electricity production from human urine in ceramic microbial fuel cells with alternative non-fluorinated polymer binders for cathode construction. Separation and Purification Technology, 187, 436-442. https://doi.org/10.1016/j.seppur.2017.06.025

© 2017 Elsevier B.V. Polytetrafluoroethylene (PTFE) is one of the most common binders employed to prepare cathode electrodes in microbial fuel cells (MFCs) and yet this fluorinated polymer is neither sustainable nor environmentally friendly. In this... Read More about Electricity production from human urine in ceramic microbial fuel cells with alternative non-fluorinated polymer binders for cathode construction.

Towards implementation of cellular automata in Microbial Fuel Cells (2017)
Journal Article
Sirakoulis, G. C., Tsompanas, M. A., Adamatzky, A., Greenman, J., & Ieropoulos, I. (2017). Towards implementation of cellular automata in Microbial Fuel Cells. PLoS ONE, 12(5), e0177528. https://doi.org/10.1371/journal.pone.0177528

© 2017 Tsompanas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are... Read More about Towards implementation of cellular automata in Microbial Fuel Cells.

Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system (2017)
Journal Article
Ieropoulos, I., Pasternak, G., & Greenman, J. (2017). Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system. PLoS ONE, 12(5), e0176475. https://doi.org/10.1371/journal.pone.0176475

© 2017 Ieropoulos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are... Read More about Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system.

Cellular non-linear network model of microbial fuel cell (2017)
Journal Article
Sirakoulis, G. C., Phillips, N., Tsompanas, M. A., Adamatzky, A., Ieropoulos, I., & Greenman, J. (2017). Cellular non-linear network model of microbial fuel cell. BioSystems, 156-157, 53-62. https://doi.org/10.1016/j.biosystems.2017.04.003

© 2017 Elsevier B.V. A cellular non-linear network (CNN) is a uniform regular array of locally connected continuous-state machines, or nodes, which update their states simultaneously in discrete time. A microbial fuel cell (MFC) is an electro-chemica... Read More about Cellular non-linear network model of microbial fuel cell.